6 research outputs found

    Distribution and Excretion of BisGMA in Guinea Pigs

    Get PDF
    Bisphenol-A-glycidyldimethacrylate (BisGMA) is used in many resin-based dental materials. It was shown in vitro that BisGMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of [14C]BisGMA applied via gastric and intravenous administration (at dose levels well above those encountered in dental care) were examined in vivo in guinea pigs to test the hypothesis that BisGMA reaches cytotoxic levels in mammalian tissues. [14C]BisGMA was taken up rapidly from the stomach and intestine after gastric administration and was widely distributed in the body following administration by each route. Most [14C] was excreted within one day as 14CO2. The peak equivalent BisGMA levels in guinea pig tissues examined were at least 1000-fold less than known toxic levels. The peak urine level in guinea pigs that received well in excess of the body-weightadjusted dose expected in humans was also below known toxic levels. The study therefore did not support the hypothesis

    Distribution and Excretion of TEGDMA in Guinea Pigs and Mice

    Get PDF
    The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis

    Effects of flowable liners on the shrinkage vectors of bulk-fill composites

    No full text
    Objectives!#!This investigation evaluated the effect of flowable liners beneath a composite restoration applied via different methods on the pattern of shrinkage vectors.!##!Methods!#!Forty molars were divided into five groups (n = 8), and cylindrical cavities were prepared and bonded with a self-etch adhesive (AdheSe). Tetric EvoCeram Bulk Fill (TBF) was used as the filling material in all cavities. The flowable liners Tetric EvoFlow Bulk Fill (TEF) and SDR were used to line the cavity floor. In gp1-TBF, the flowable composite was not used. TEF was applied in a thin layer in gp2-fl/TEF + TBF and gp3-fl/TEF + TBFincremental. Two flowable composites with a layer thickness of 2 mm were compared in gp4-fl/TEF + TBF and gp5-fl/SDR + TBF. TEF and SDR were mixed with radiolucent glass beads, while air bubbles inherently present in TBF served as markers. Each material application was scanned twice by micro-computed tomography before and after light curing. Scans were subjected to image segmentation for calculation of the shrinkage vectors.!##!Results!#!The absence of a flowable liner resulted in the greatest shrinkage vectors. A thin flowable liner (gp2-fl/TEF + TBFbulk) resulted in larger overall shrinkage vectors for the whole restoration than a thick flowable liner (gp4-fl/TEF + TBF). A thin flowable liner and incremental application (gp3-fl/TEF + TBFincremental) yielded the smallest shrinkage vectors. SDR yielded slightly smaller shrinkage vectors for the whole restoration than that observed in gp4-fl/TEF + TBF.!##!Conclusions!#!Thick flowable liner layers had a more pronounced stress-relieving effect than thin layers regardless of the flowable liner type.!##!Clinical relevance!#!It is recommended to apply a flowable liner (thin or thick) beneath bulk-fill composites, preferably incrementally

    Regulation of the epithelial sodium channels (ENaC) by small G proteins and phosphatidylinositides

    No full text
    corecore