23 research outputs found

    Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by denosumab in patients with postmenopausal osteoporosis

    Full text link
    Summary: In patients with postmenopausal osteoporosis, prior osteoporosis treatment affected the bone mineral density increase of following treatment with 12 months of romosozumab, although it did not affect that of following treatment with 12 months of denosumab after romosozumab. Purpose: To investigate the effects of prior osteoporosis treatment on the response to treatment with romosozumab (ROMO) followed by denosumab (DMAb) in patients with postmenopausal osteoporosis. Methods: In this prospective, observational, multicenter study, treatment-naïve patients (Naïve; n = 55) or patients previously treated with bisphosphonates (BP; n = 37), DMAb (DMAb; n = 45) or teriparatide (TPTD; n = 17) (mean age, 74.6 years; T-scores of the lumbar spine [LS] − 3.2 and total hip [TH] − 2.6) were switched to ROMO for 12 months, followed by DMAb for 12 months. Bone mineral density (BMD) and serum bone turnover markers were evaluated for 24 months. Results: A BMD increase was observed at 12 and 24 months in the following patients: Naïve (18.2% and 22.0%), BP (10.2% and 12.1%), DMAb (6.6% and 9.7%), and TPTD (10.8% and 15.0%) (P < 0.001 between the groups at both 12 and 24 months) in LS and Naïve (5.5% and 8.3%), BP (2.9% and 4.1%), DMAb (0.6% and 2.2%), and TPTD (4.3% and 5.4%) (P < 0.01 between the groups at 12 months and P < 0.001 at 24 months) in TH, respectively. The BMD increase in LS from 12 to 24 months was negatively associated with the levels of bone resorption marker at 24 months. Incidences of major fragility fractures for the respective groups were as follows: Naïve (5.5%), BP (16.2%), DMAb (11.1%), and TPTD (5.9%). Conclusions: Previous treatment affected the BMD increase of following treatment with ROMO, although it did not affect that of following treatment with DMAb after ROMO.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00198-022-06386-yEbina K., Etani Y., Tsuboi H., et al. Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by denosumab in patients with postmenopausal osteoporosis. Osteoporosis International 33, 1807 (2022

    Rare-earth element geochemistry of banded iron formations and associated amphibolite from the Sargur belts, south India

    No full text
    Major and rare-earth elements (REE) of banded iron formations (BIFs) and associated amphibolite from the Sargur belts, the oldest schist belts in the Dharwar craton, were determined by X-ray fluorescence and inductively coupled plasma mass spectrometry (ICP-MS). The chondrite-normalized REE patterns of BIFs are light REE-enriched with a striking positive Eu anomaly, resembling those of modern hydrothermal solutions from the mid-oceanic ridge. Amphibolite is flat and chondritic in the REE plot. The Al2O3/TiO2 ratio of BIFs is about the same as that of amphibolite and is different from that of terrigenous elastics. These facts suggest that the BIFs were of hydrothermal origin and had a genetic relation to amphibolite, which may have originated from the Archaean mid-oceanic ridge basalt. Subtle negative or no Ce anomaly of BIFs indicates that contemporary seawater was less oxic than today. Copyright © 1996 Elsevier Science Ltd

    Early Paleozoic jadeitites in Japan: An overview

    No full text
    corecore