2,449 research outputs found

    Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

    Full text link
    According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a Λ\Lambda hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the Λ\Lambda hyperon binding energy BΛB_{\Lambda} for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry

    3D Multi-system Bayesian Calibration with Energy Conservation to Study Rapidity-dependent Dynamics of Nuclear Collisions

    Full text link
    Considerable information about the early-stage dynamics of heavy-ion collisions is encoded in the rapidity dependence of measurements. To leverage the large amount of experimental data, we perform a systematic analysis using three-dimensional hydrodynamic simulations of multiple collision systems -- large and small, symmetric and asymmetric. Specifically, we perform fully 3D multi-stage hydrodynamic simulations initialized by a parameterized model for rapidity-dependent energy deposition, which we calibrate on the hadron multiplicity and anisotropic flow coefficients. We utilize Bayesian inference to constrain properties of the early- and late- time dynamics of the system, and highlight the impact of enforcing global energy conservation in our 3D model

    Artificial Intelligence for the Electron Ion Collider (AI4EIC)

    Full text link
    The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments.Comment: 27 pages, 11 figures, AI4EIC workshop, tutorials and hackatho
    • …
    corecore