22 research outputs found

    Identification of novel urine proteomic biomarkers for high stamina in high-altitude adaptation

    Get PDF
    Introduction: We aimed to identify urine biomarkers for screening individuals with adaptability to high-altitude hypoxia with high stamina levels. Although most non-high-altitude natives experience rapid decline in physical ability when ascending to high altitudes, some individuals with high-altitude adaptability continue to maintain high endurance levels.Methods: We divided the study population into two groups: the LC group (low change in endurance from low to high altitude) and HC group (high change in endurance from low to high altitude). We performed blood biochemistry testing for individuals at high altitudes and sea level. We used urine peptidome profiling to compare the HH (high-altitude with high stamina) and HL (high-altitude with low stamina) groups and the LC and HC groups to identify urine biomarkers.Results: Routine blood tests revealed that the concentration of white blood cells, lymphocytes and platelets were significantly higher in the HH group than in the HL group. Urine peptidome profiling showed that the proteins ITIH1, PDCD1LG2, NME1-NME2, and CSPG4 were significantly differentially expressed between the HH and HL groups, which was tested using ELISA. Urine proteomic analysis showed that LRG1, NID1, VASN, GPX3, ACP2, and PRSS8 were urine proteomic biomarkers of high stamina during high-altitude adaptation.Conclusion: This study provides a novel approach for identifying potential biomarkers for screening individuals who can adapt to high altitudes with high stamina

    6G Network AI Architecture for Everyone-Centric Customized Services

    Full text link
    Mobile communication standards were developed for enhancing transmission and network performance by using more radio resources and improving spectrum and energy efficiency. How to effectively address diverse user requirements and guarantee everyone's Quality of Experience (QoE) remains an open problem. The Sixth Generation (6G) mobile systems will solve this problem by utilizing heterogenous network resources and pervasive intelligence to support everyone-centric customized services anywhere and anytime. In this article, we first coin the concept of Service Requirement Zone (SRZ) on the user side to characterize and visualize the integrated service requirements and preferences of specific tasks of individual users. On the system side, we further introduce the concept of User Satisfaction Ratio (USR) to evaluate the system's overall service ability of satisfying a variety of tasks with different SRZs. Then, we propose a network Artificial Intelligence (AI) architecture with integrated network resources and pervasive AI capabilities for supporting customized services with guaranteed QoEs. Finally, extensive simulations show that the proposed network AI architecture can consistently offer a higher USR performance than the cloud AI and edge AI architectures with respect to different task scheduling algorithms, random service requirements, and dynamic network conditions

    An LSWI-Based Method for Mapping Irrigated Areas in China Using Moderate-Resolution Satellite Data

    No full text
    Accurate spatial information about irrigation is crucial to a variety of applications, such as water resources management, water exchange between the land surface and atmosphere, climate change, hydrological cycle, food security, and agricultural planning. Our study proposes a new method for extracting cropland irrigation information using statistical data, mean annual precipitation and Moderate Resolution Imaging Spectroradiometer (MODIS) land cover type data and surface reflectance data. The approach is based on comparing the land surface water index (LSWI) of cropland pixels to that of adjacent forest pixels with similar normalized difference vegetation index (NDVI). In our study, we validated the approach over mainland China with 612 reference samples (231 irrigated and 381 non-irrigated) and found the accuracy of 62.09%. Validation with statistical data also showed that our method explained 86.67 and 58.87% of the spatial variation in irrigated area at the provincial and prefecture levels, respectively. We further compared our new map to existing datasets of FAO/UF, IWMI, Zhu and statistical data, and found a good agreement with the irrigated area distribution from Zhu’s dataset. Results show that our method is an effective method apply to mapping irrigated regions and monitoring their yearly changes. Because the method does not depend on training samples, it can be easily repeated to other regions

    Varying Responses of Vegetation Greenness to the Diurnal Warming across the Global

    No full text
    The distribution of global warming has been varying both diurnally and seasonally. Little is known about the spatiotemporal variations in the relationships between vegetation greenness and day- and night-time warming during the last decades. We investigated the global inter- and intra-annual responses of vegetation greenness to the diurnal asymmetric warming during the period of 1982–2015, using the normalized different vegetation index (NDVI, a robust proxy for vegetation greenness) obtained from the NOAA/AVHRR NDVI GIMMS3g dataset and the monthly average daily maximum (Tmax) and minimum temperature (Tmin) obtained from the gridded Climate Research Unit, University of East Anglia. Several findings were obtained: (1) The strength of the relationship between vegetation greenness and the diurnal temperature varied on inter-annual and seasonal timescales, indicating generally weakening warming effects on the vegetation activity across the global. (2) The decline in vegetation response to Tmax occurred mainly in the mid-latitudes of the world and in the high latitudes of the northern hemisphere, whereas the decline in the vegetation response to Tmin primarily concentrated in low latitudes. The percentage of areas with a significantly negative trend in the partial correlation coefficient between vegetation greenness and diurnal temperature was greater than that of the areas showing the significant positive trend. (3) The trends in the correlation between vegetation greenness and diurnal warming showed a complex spatial pattern: the majority of the study areas had undergone a significant declining strength in the vegetation greenness response to Tmax in all seasons and to Tmin in seasons except autumn. These findings are expected to have important implications for studying the diurnal asymmetry warming and its effect on the terrestrial ecosystem

    Mapping Irrigated Areas of Northeast China in Comparison to Natural Vegetation

    No full text
    Accurate information about the location and extent of irrigation is fundamental to many aspects of food security and water resource management. This study develops a new method for identifying irrigation in northeastern China by comparing canopy moisture between the cropland and adjacent natural ecosystems (i.e., forests). This method is based on two basic assumptions, which we validated using field survey data. First, the canopy moisture of irrigated cropland, indicated by a satellite-based land surface water index (LSWI), is higher than that of the adjacent forest. Second, the difference in LSWI between irrigation cropland and forest is larger in arid regions than in humid regions. Based on the field survey and statistical dataset, our method performed well in indicating spatial variations of irrigated areas. Results from this study suggest that our method is a promising tool for mapping irrigated areas, as it is a general and repeatable method that does not rely on training samples and can be applied to other regions

    New Global MuSyQ GPP/NPP Remote Sensing Products From 1981 to 2018

    No full text
    Long time series of vegetation productivity products are significant for the research of global carbon cycle and climate change. In this article, the 0.05° global gross primary productivity (GPP) and net primary productivity (NPP) products from 1981 to 2018 were estimated by using the improved multisource data synergized quantitative (MuSyQ) NPP algorithm. The model was based on the fraction of absorbed photosynthetically active radiation (FPAR) and leaf area index (LAI) data from the global land surface satellite (GLASS) dataset, the light use efficiency (LUE) from the parameterization approach with the clearness index (CI), the ERA-Interim meteorological data, and other environmental factors. The results suggested that the accuracy of the MuSyQ GPP product was slightly higher than that of the MOD17 GPP product when compared with the FLUXNET GPP, especially for the evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), wetland (WET), cropland (CRO), woody savanna (WSAV), and closed shrubland (CSH) land types. MuSyQ NPP product also has higher accuracy [R2 = 0.81, RMSE = 214.6 gC/(m2year)] than MOD17 NPP [R2 = 0.55, RMSE = 214.7 gC/(m2year)] when compared with the BigFoot NPP, which indicated the reliability of the improved MuSyQ-NPP algorithm in estimating global NPP. Our results showed a significant upward trend in global NPP, which was most affected by FPAR, followed by LUE, temperature, and PAR. The average NPP declined significantly in Asia and Amazon tropical rainforests and increased significantly in Africa tropical rainforest, which were affected by the local deforestation or the forest expansion, and also the climate factors

    Perk heterozygosity ameliorates chronic hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in male rats

    No full text
    Background Pulmonary hypertension (PH) is a rare and deadly disease characterized by remodeling of the pulmonary vasculature and increased pulmonary artery pressure. hypobaric pulmonary hypertension (HPH) is clinically classified as group 4 of pulmonary hypertension and has a poor prognosis . Previous reports showed that HPH was associated with increased endoplasmic reticulum (ER) stress. The protein kinase R-like endoplasmic reticulum kinase (PERK) is an ER-associated stress protein. However, to date, its physiological effects on HPH and RVF development remains unknown. This study aimed to assess PERK’s role in HPH and RV function using in vivo experimental model. Methods Perk-knockout male Sprague–Dawley rats were generated and were housed in either a hypobaric chamber or in a normoxic environment. After stimulation for 4 weeks, the hemodynamic parameters of the rats were measured. The heart and lungs were harvested for pathological observation. Blood was collected for the detection of inflammatory indexes. The right ventricle tissue was collected to assess phosphorylated-AKT, ROCK1, ET1, and MMP2 protein expression. Results: we firstly generated Perk+/− rats, Under normal conditions, Perk+/− rats showed no changes in mPAP(mean pulmonary artery pressure), RVHI(Right ventricular hypertrophy index), cardiomyocyte size and interstitial fibrosis, and pulmonary vascular remodeling. However, in response to chronic hypoxia, Perk+/− rats exhibited decreased in mPAP, RVHI, ventricular fibrosis, and lung remodeling compared to wild-type rats. Perk+/− rats also showed lower expression of phosphor-AKT, ROCK1, ET1, and MMP2 protein in response to chronic hypoxia. Conclusions These findings suggest that Perk heterozygosity protects against HPH and Perk may be a suitable target for treating HPH

    Zircon U-Pb Ages, Petrogenesis, and Tectono-Magmatic Evolution of Late Jurassic–Early Cretaceous S-Type Granitoid in Wujinshan Area of Northwestern Zhejiang, South China

    No full text
    Northwest Zhejiang area (NWZJ) is one of the important parts of the large Qingzhou-Hangzhou mineralized belt in South China formed during the Late Jurassic–Early Cretaceous period. Through the study of zircon LA-ICPMS U-Pb dating, whole-rock geochemistry, and Sr-Nd isotopes for the Wujinshan granitoid in NWZJ, two distinct S-type granitic rocks of porphyry type granodiorite and granite were identified, and the two ages of 146.4 ± 1.5 Ma for granodiorite porphyry and 141.9 ± 1.4 Ma for granite porphyries were obtained. These rocks exhibited a geochemical affinity for S-type granitoid, and the two magmatic ages indicate that these rocks were intruded in two magmatic pulses. The Late Jurassic granodiorite porphyry showed moderate SiO2 (64.38–67.89 wt.%) with higher K2O + Na2O (6.22–6.78 wt.%), lower K2O/Na2O (0.57–0.96), moderate Zr (170–215 ppm), high Sr (302–475 ppm), and low Mg# (31–32) contents. The Early Cretaceous granite porphyries contained high SiO2 (69.68–74.85 wt.%), variable K2O + Na2O (4.60–6.99), high K2O/Na2O (1.72–23.53), slightly higher Zr (160–255 ppm), variable Sr (25–412 ppm), and very low to intermediate Mg# (13–44). The granodiorites had intermediate ∑REE (149–177 ppm), while granite samples showed moderate to high ∑REE content (147–271 ppm), and both rocks showed negative Eu anomalies (0.18–0.29). We propose that these two rocks were predominantly generated by the partial melting of Mesoproterozoic metamorphic basement and underwent variable degrees of fractionation and evolution. The Late Jurassic granodiorite porphyry was formed by the partial melting of Mesoproterozoic metamorphic basement with slab-derived melts or basaltic lower crust input following fractional crystallization, while the Early Cretaceous granite porphyries were generated by the partial melting of Mesoproterozoic metamorphic basement and crystal fractionation with variable magma mixing and assimilation in the upper crust. Tectonically, the Wujinshan granitoid formed in a volcanic arc setting largely affected by the subduction and slab rollback of the paleo-Pacific Plate

    Chemical environment of rare earth ions in Ge28.125Ga6.25S65.625 glass-ceramics doped with Dy3+

    No full text
    We have annealed Ge28.125Ga6.25S65.625 glasses doped with 0.5% Dy to create glass-ceramics in order to examine the local chemical environment of the rare earth ions (REI). More than 12 times enhancement of the emission at 2.9 and 3.5μm was achieved in glass-ceramics produced using prolonged annealing time. Elemental mapping showed clear evidence that Ga2S3 crystalline grains with a size of 50nm were dispersed in a Ge-S glass matrix in the glass-ceramics, and the REI could only be found near the Ga2S3 crystalline grains. From the unchanged lineshape of the emissions at 2.9 and 3.5μm and lack of splitting of the absorption peaks, we concluded that the REI were bonded to Ga on the surface of the Ga2S3 crystals
    corecore