228 research outputs found

    Face recognition based on improved Retinex and sparse representation

    Get PDF
    AbstractIn this paper, we proposed a method based on improved Retinex theory and sparse representation to deal with the difficulties for face recognition under inhomogeneous illumination. In our work, the total variation model was introduced to optimize the parameters of Retinex and the illumination insensitive features were extracted as the dictionary of sparse representation. Finally, the facial images could be recognized by the proposed algorithm. The experimental results on different benchmark face databases indicated that the proposed approach could be more efficient than traditional methods for face images under uncontrolled illumination conditions

    Uplink Transceiver Design and Optimization for Transmissive RMS Multi-Antenna Systems

    Full text link
    In this paper, a novel uplink communication for the transmissive reconfigurable metasurface (RMS) multi-antenna system is investigated. Specifically, a transmissive RMS-based receiver equipped with a single receiving antenna is first proposed, and a far-near field channel model is also given. Then, in order to maximize the system sum-rate, we formulate a joint optimization problem over subcarrier allocation, power allocation and RMS transmissive coefficient design. Since the coupling of optimization variables, the problem is non-convex, so it is challenging to solve it directly. In order to tackle this problem, the alternating optimization (AO) algorithm is used to decouple the optimization variables and divide the problem into two subproblems to solve. Numerical results verify that the proposed algorithm has good convergence performance and can improve system sum-rate compared with other benchmark algorithms.Comment: arXiv admin note: text overlap with arXiv:2109.0546

    On the Performance of RIS-Aided Spatial Scattering Modulation for mmWave Transmission

    Full text link
    In this paper, we investigate a state-of-the-art reconfigurable intelligent surface (RIS)-assisted spatial scattering modulation (SSM) scheme for millimeter-wave (mmWave) systems, where a more practical scenario that the RIS is near the transmitter while the receiver is far from RIS is considered. To this end, the line-of-sight (LoS) and non-LoS links are utilized in the transmitter-RIS and RIS-receiver channels, respectively. By employing the maximum likelihood detector at the receiver, the conditional pairwise error probability (CPEP) expression for the RIS-SSM scheme is derived under the two scenarios that the received beam demodulation is correct or not. Furthermore, the union upper bound of average bit error probability (ABEP) is obtained based on the CPEP expression. Finally, the derivation results are exhaustively validated by the Monte Carlo simulations.Comment: arXiv admin note: substantial text overlap with arXiv:2307.1466

    Throughput Maximization for UAV-enabled Integrated Periodic Sensing and Communication

    Full text link
    Unmanned aerial vehicle (UAV) is expected to revolutionize the existing integrated sensing and communication (ISAC) system and promise a more flexible joint design. Nevertheless, the existing works on ISAC mainly focus on exploring the performance of both functionalities simultaneously during the entire considered period, which may ignore the practical asymmetric sensing and communication requirements. In particular, always forcing sensing along with communication may make it is harder to balance between these two functionalities due to shared spectrum resources and limited transmit power. To address this issue, we propose a new integrated periodic sensing and communication mechanism for the UAV-enabled ISAC system to provide a more flexible trade-off between two integrated functionalities. Specifically, the system achievable rate is maximized via jointly optimizing UAV trajectory, user association, target sensing selection, and transmit beamforming, while meeting the sensing frequency and beam pattern gain requirement for the given targets. Despite that this problem is highly non-convex and involves closely coupled integer variables, we derive the closed-form optimal beamforming vector to dramatically reduce the complexity of beamforming design, and present a tight lower bound of the achievable rate to facilitate UAV trajectory design. Based on the above results, we propose a penalty-based algorithm to efficiently solve the considered problem. The optimal achievable rate and the optimal UAV location are analyzed under a special case of infinity number of antennas. Furthermore, we prove the structural symmetry between the optimal solutions in different ISAC frames without location constraints and propose an efficient algorithm for solving the problem with location constraints.Comment: 32 pages, This work has been submitted to the IEEE for possible publicatio

    Reconfigurable Intelligent Surface Assisted Free Space Optical Information and Power Transfer

    Full text link
    Free space optical (FSO) transmission has emerged as a key candidate technology for 6G to expand new spectrum and improve network capacity due to its advantages of large bandwidth, low electromagnetic interference, and high energy efficiency. Resonant beam operating in the infrared band utilizes spatially separated laser cavities to enable safe and mobile high-power energy and high-rate information transmission but is limited by line-of-sight (LOS) channel. In this paper, we propose a reconfigurable intelligent surface (RIS) assisted resonant beam simultaneous wireless information and power transfer (SWIPT) system and establish an optical field propagation model to analyze the channel state information (CSI), in which LOS obstruction can be detected sensitively and non-line-of-sight (NLOS) transmission can be realized by changing the phased of resonant beam in RIS. Numerical results demonstrate that, apart from the transmission distance, the NLOS performance depends on both the horizontal and vertical positions of RIS. The maximum NLOS energy efficiency can achieve 55% within a transfer distance of 10m, a translation distance of ±\pm4mm, and rotation angle of ±\pm50{\deg}

    Design of Two-Level Incentive Mechanisms for Hierarchical Federated Learning

    Full text link
    Hierarchical Federated Learning (HFL) is a distributed machine learning paradigm tailored for multi-tiered computation architectures, which supports massive access of devices' models simultaneously. To enable efficient HFL, it is crucial to design suitable incentive mechanisms to ensure that devices actively participate in local training. However, there are few studies on incentive mechanism design for HFL. In this paper, we design two-level incentive mechanisms for the HFL with a two-tiered computing structure to encourage the participation of entities in each tier in the HFL training. In the lower-level game, we propose a coalition formation game to joint optimize the edge association and bandwidth allocation problem, and obtain efficient coalition partitions by the proposed preference rule, which can be proven to be stable by exact potential game. In the upper-level game, we design the Stackelberg game algorithm, which not only determines the optimal number of edge aggregations for edge servers to maximize their utility, but also optimize the unit reward provided for the edge aggregation performance to ensure the interests of cloud servers. Furthermore, numerical results indicate that the proposed algorithms can achieve better performance than the benchmark schemes

    CUTS: Neural Causal Discovery from Irregular Time-Series Data

    Full text link
    Causal discovery from time-series data has been a central task in machine learning. Recently, Granger causality inference is gaining momentum due to its good explainability and high compatibility with emerging deep neural networks. However, most existing methods assume structured input data and degenerate greatly when encountering data with randomly missing entries or non-uniform sampling frequencies, which hampers their applications in real scenarios. To address this issue, here we present CUTS, a neural Granger causal discovery algorithm to jointly impute unobserved data points and build causal graphs, via plugging in two mutually boosting modules in an iterative framework: (i) Latent data prediction stage: designs a Delayed Supervision Graph Neural Network (DSGNN) to hallucinate and register unstructured data which might be of high dimension and with complex distribution; (ii) Causal graph fitting stage: builds a causal adjacency matrix with imputed data under sparse penalty. Experiments show that CUTS effectively infers causal graphs from unstructured time-series data, with significantly superior performance to existing methods. Our approach constitutes a promising step towards applying causal discovery to real applications with non-ideal observations.Comment: https://openreview.net/forum?id=UG8bQcD3Em
    corecore