146 research outputs found
Old Techniques for New Join Algorithms: A Case Study in RDF Processing
Recently there has been significant interest around designing specialized RDF
engines, as traditional query processing mechanisms incur orders of magnitude
performance gaps on many RDF workloads. At the same time researchers have
released new worst-case optimal join algorithms which can be asymptotically
better than the join algorithms in traditional engines. In this paper we apply
worst-case optimal join algorithms to a standard RDF workload, the LUBM
benchmark, for the first time. We do so using two worst-case optimal engines:
(1) LogicBlox, a commercial database engine, and (2) EmptyHeaded, our prototype
research engine with enhanced worst-case optimal join algorithms. We show that
without any added optimizations both LogicBlox and EmptyHeaded outperform two
state-of-the-art specialized RDF engines, RDF-3X and TripleBit, by up to 6x on
cyclic join queries-the queries where traditional optimizers are suboptimal. On
the remaining, less complex queries in the LUBM benchmark, we show that three
classic query optimization techniques enable EmptyHeaded to compete with RDF
engines, even when there is no asymptotic advantage to the worst-case optimal
approach. We validate that our design has merit as EmptyHeaded outperforms
MonetDB by three orders of magnitude and LogicBlox by two orders of magnitude,
while remaining within an order of magnitude of RDF-3X and TripleBit
- …