35 research outputs found

    ABCG2 is a Direct Transcriptional Target of Hedgehog Signaling and Involved in Stroma-Induced Drug Tolerance in Diffuse Large B-Cell Lymphoma

    No full text
    Successful treatment of diffuse large B-cell lymphoma (DLBCL) is frequently hindered by development of resistance to conventional chemotherapy resulting in disease relapse and high mortality. High expression of anti-apoptotic and/or drug transporter proteins induced by oncogenic signaling pathways has been implicated in the development of chemoresistance in cancer. Previously, our studies showed high expression of ATP-binding cassette drug transporter ABCG2 in DLBCL correlated inversely with disease-free and failure-free survival. In this study, we have implicated activated hedgehog (Hh) signaling pathway as a key factor behind high ABCG2 expression in DLBCL through direct upregulation of ABCG2 gene transcription. We have identified a single binding site for GLI transcription factors in the ABCG2 promoter and established its functionality using luciferase reporter, site-directed mutagenesis and chromatin-immunoprecipitation assays. Furthermore, in DLBCL tumor samples, significantly high ABCG2 and GLI1 levels were found in DLBCL tumors with lymph node involvement in comparison to DLBCL tumor cells collected from pleural and/or peritoneal effusions. This suggests a role for the stromal microenvironment in maintaining high levels of ABCG2 and GLI1. Accordingly, in vitro co-culture of DLBCL cells with HS-5 stromal cells increased ABCG2 mRNA and protein levels by paracrine activation of Hh signaling. In addition to ABCG2, co-culture of DLBCL cells with HS-5 cells also resulted in increase expression of the antiapoptotic proteins BCL2, BCL-xL and BCL2A1 and in induced chemotolerance to doxorubicin and methotrexate, drugs routinely used for the treatment of DLBCL. Similarly, activation of Hh signaling in DLBCL cell lines with recombinant Shh N-terminal peptide resulted in increased expression of BCL2 and ABCG2 associated with increased chemotolerance. Finally, functional inhibition of ABCG2 drug efflux activity with fumitremorgin (FTC) or inhibition of Hh signaling with cyclopamine-KAAD abrogated the stroma-induced chemotolerance suggesting that targeting ABCG2 and Hh signaling may have therapeutic value in overcoming chemoresistance in DLBCL

    Jun-regulated genes promote interaction of diffuse large B-cell lymphoma with the microenvironment

    No full text
    Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease with a high proliferation rate. However, the molecular and genetic features that drive the aggressive clinical behavior of DLBCL are not fully defined. Here, we have demonstrated that activated Jun signaling is a frequent event in DLBCL that promotes dissemination of malignant cells. Downregulation of Jun dramatically reduces lymphoma cell adhesion to extracellular matrix proteins, subcutaneous tumor size in nude mice, and invasive behavior, including bone marrow infiltration and interaction with bone marrow stromal cells. Furthermore, using a combination of RNA interference and gene expression profiling, we identified Jun target genes that are associated with disseminated lymphoma. Among them, ITGAV, FoxC1, and CX3CR1 are significantly enriched in patients with 2 or more extranodal sites. Our results point to activated Jun signaling as a major driver of the aggressive phenotype of DLBCL

    Smoothened (SMO) regulates insulin-like growth factor 1 receptor (IGF1R) levels and protein kinase B (AKT) localization and signaling

    No full text
    The oncoprotein Smoothened (SMO), a Frizzled-class-G-protein-coupled receptor, is the central transducer of hedgehog (Hh) signaling. While canonical SMO signaling is best understood in the context of cilia, evidence suggests that SMO has other functions in cancer biology that are unrelated to canonical Hh signaling. Herein, we provided evidence that elevated levels of human SMO show a strong correlation with elevated levels of insulin-like growth factor 1 receptor (IGF1R) and reduced survival in diffuse large B-cell lymphoma (DLBCL). As an integral component of raft microdomains, SMO plays a fundamental role in maintaining the levels of IGF1R in lymphoma and breast cancer cells as well IGF1R-associated activation of protein kinase B (AKT). Silencing of SMO increases lysosomal degradation and favors a localization of IGF1R to late endosomal compartments instead of early endosomal compartments from which much of the receptor would normally recycle. In addition, loss of SMO interferes with the lipid raft localization and retention of the remaining IGF1R and AKT, thereby disrupting the primary signaling context for IGF1R/AKT. This activity of SMO is independent of its canonical signaling and represents a novel and clinically relevant contribution to signaling by the highly oncogenic IGF1R/AKT signaling axis

    Detection of ABCC1 expression in classical Hodgkin lymphoma is associated with increased risk of treatment failure using standard chemotherapy protocols

    Get PDF
    BACKGROUND: The mechanisms responsible for chemoresistance in patients with refractory classical Hodgkin lymphoma (CHL) are unknown. ATP-binding cassette (ABC) transporters confer multidrug resistance in various cancers and ABCC1 overexpression has been shown to contribute to drug resistance in the CHL cell line, KMH2. FINDINGS: We analyzed for expression of five ABC transporters ABCB1, ABCC1, ABCC2, ABCC3 and ABCG2 using immunohistochemistry in 103 pre-treatment tumor specimens obtained from patients with CHL. All patients received first-line standard chemotherapy with doxorubicin (Adriamycin®), bleomycin, vinblastine, and dacarbazine (ABVD) or equivalent regimens. ABCC1 was expressed in Hodgkin and Reed-Sternberg (HRS) cells in 16 of 82 cases (19.5%) and ABCG2 was expressed by HRS cells in 25 of 77 cases (32.5%). All tumors were negative for ABCB1, ABCC2 and ABCC3. ABCC1 expression was associated with refractory disease (p = 0.01) and was marginally associated with poorer failure-free survival (p = 0.06). Multivariate analysis after adjusting for hemoglobin and albumin levels and age showed that patients with CHL with HRS cells positive for ABCC1 had a higher risk of not responding to treatment (HR = 2.84, 95%, CI: 1.12-7.19 p = 0.028). CONCLUSIONS: Expression of ABCC1 by HRS cells in CHL patients predicts a higher risk of treatment failure and is marginally associated with poorer failure-free survival using standard frontline chemotherapy regimens
    corecore