807 research outputs found

    CRYSTALLIZATION OF SALT-FREE CHYMOTRYPSINOGEN AND CHYMOTRYPSIN FROM SOLUTION IN DILUTE ETHYL ALCOHOL

    Get PDF
    Chymotrypsinogen and chymotrypsin crystallize readily from dilute solutions of ethyl alcohol in the absence of salts. The crystals formed in the presence of alcohol differ in appearance from those formed in the presence of ammonium sulfate. Chymotrypsinogen yields well formed polyhedrons instead of fine needles usually produced in ammonium sulfate solution. Chymotrypsin yields fine needles in the presence of alcohol and rhombohedrons in the presence of ammonium sulfate. The enzymatic properties of the crystals formed in the presence of alcohol are identical with those of the crystals isolated in the presence of ammonium sulfate

    FORMATION OF NEW CRYSTALLINE ENZYMES FROM CHYMOTRYPSIN : ISOLATION OF BETA AND GAMMA CHYMOTRYPSIN

    Get PDF
    A solution of chymotrypsin on slight hydrolysis undergoes an irreversible change into new proteins, two of which are enzymes and have been isolated in crystalline form. The new crystalline enzymes, called beta and gamma chymotrypsins, differ from the original chymotrypsin as well as from each other in many physical and chemical respects, such as molecular weight, crystalline form, solubility, and combining capacity with acid. The new enzymes still possess the same enzymatic properties as chymotrypsin. It thus appears that the irreversible change from chymotrypsin to the new enzymes does not affect the structure responsible for the enzymatic activity of the molecule. The solubility curves of the new enzymes agree approximately with the curves for a solid phase of one component and furnish very good evidence that the preparations represent distinct substances. The various enzymes when mixed at the proper pH have a tendency to form mixed crystals of the solid solution type. Thus at pH 4.0 gamma chymotrypsin combines to form solid solution crystals with either alpha or beta chymotrypsin. Hence at this pH separation of gamma from either alpha or beta by means of fractional crystallization is impossible. At pH 5.0–6.0, however, each material crystallizes in its own characteristic form and at its own rate; thus a fractional separation of the various enzymes from each other becomes feasible

    ISOLATION OF A CRYSTALLINE PROTEIN COMPOUND OF TRYPSIN AND OF SOYBEAN TRYPSIN-INHIBITOR

    Get PDF
    A crystalline protein compound has been isolated from a solution containing crystalline trypsin and crystalline soybean inhibitor. The protein consists of about equal weights of trypsin and of the inhibitor. Denaturation by heat or by alkali resolves the compound into its components

    HYDRATION OF GELATIN IN SOLUTION

    Get PDF
    1. It was shown that the high viscosity of gelatin solutions as well as the character of the osmotic pressure-concentration curves indicates that gelatin is hydrated even at temperatures as high as 50°C. 2. The degree of hydration of gelatin was determined by means of viscosity measurements through the application of the formula See PDF for Equation. 3. When the concentration of gelatin was corrected for the volume of water of hydration as obtained from the viscosity measurements, the relation between the osmotic pressure of various concentrations of gelatin and the corrected concentrations became linear, thus making it possible to determine the apparent molecular weight of gelatin through the application of van't Hoff's law. The molecular weight of gelatin at 35°C. proved to be 61,500. 4. A study was made of the mechanism of hydration of gelatin and it was shown that the experimental data agree with the theory that the hydration of gelatin is a pure osmotic pressure phenomenon brought about by the presence in gelatin of a number of insoluble micellæ containing a definite amount of a soluble ingredient of gelatin. As long as there is a difference in the osmotic pressure between the inside of the micellæ and the outside gelatin solution the micellæ swell until an equilibrium is established at which the osmotic pressure inside of the micellæ is balanced by the total osmotic pressure of the gelatin solution and by the elasticity pressure of the micellæ. 5. On addition of HCl to isoelectric gelatin the total activity of ions inside of the micellæ is greater than in the outside solution due to a greater concentration of protein in the micellæ. This brings about a further swelling of the micellæ until a Donnan equilibrium is established in the ion distribution accompanied by an equilibrium in the osmotic pressure. Through the application of the theory developed here it was possible actually to calculate the osmotic pressure difference between the inside of the micellæ and the outside solution which was brought about by the difference in the ion distribution. 6. According to the same theory the effect of pH on viscosity of gelatin should diminish with increase in concentration of gelatin, since the difference in the concentration of the protein inside and outside of the micellæ also decreases. This was confirmed experimentally. At concentrations above 8 gm. per 100 gm. of H2O there is very little difference in the viscosity of gelatin of various pH as compared with that of isoelectric gelatin

    CRYSTALLINE SOYBEAN TRYPSIN INHIBITOR

    Get PDF

    FORMATION OF TRYPSIN FROM CRYSTALLINE TRYPSINOGEN BY MEANS OF ENTEROKINASE

    Get PDF
    Crystalline trypsinogen is most readily and completely transformed into trypsin by means of enterokinase in the range of pH 5.2–6.0 at 5°C. and at a concentration of trypsinogen of not more than 0.1 mg. per ml. The action of enterokinase under these conditions is that of a typical enzyme. The process follows closely the course of a catalytic unimolecular reaction, the rate of formation of trypsin being proportional to the concentration of enterokinase added and the ultimate amount of trypsin formed being independent of the concentration of enterokinase. The catalytic action of enterokinase on crystalline trypsinogen in dilute solution at pH more alkaline than 6.0 and in concentrated solution at pH even slightly below 6.0 is complicated by the partial transformation of the trypsinogen into inert protein which can no longer be changed into trypsin even by a large excess of enterokinase. This secondary reaction is catalyzed by the trypsin formed and the rate of the reaction is proportional to the concentration of trypsin as well as to the concentration of trypsinogen in solution. Hence under these conditions only a small part of the trypsinogen is changed by enterokinase into trypsin while a considerable part of the trypsinogen is transformed into inert protein, the more so the lower the concentration of enterokinase used. The kinetics of the formation of trypsin by means of enterokinase when accompanied by the formation of inert protein can be explained quantitatively on the theoretical assumption that both reactions are of the simple catalytic unimolecular type, the catalyst being enterokinase in the first reaction and trypsin in the second reaction

    A CELL FOR THE MEASUREMENT OF CATAPHORESIS OF ULTRAMICROSCOPIC PARTICLES

    Get PDF

    Hydrolysis of Adenosine Triphosphate by Crystalline Yeast Pyrophosphatase : Effect of zinc and magnesium ions

    Get PDF
    Schlesinger and Coon's report that crystalline yeast inorganic pyrophosphatase, in addition to its known ability to hydrolyze inorganic pyrophosphate in the presence of Mg ions, is also able to catalyze the hydrolysis of ATP and ADP in the presence of Zn ions was confirmed. A systematic study showed that the ratio of 370 of PPase-Mg over ATPase-Zn activities per milligram protein in various preparations of pyrophosphatase obtained in the course of isolation of crystalline pyrophosphatase from baker's yeast was nearly identical in all the preparations, independent of their purity. The course of hydrolysis of ATP by crystalline pyrophosphatase in the presence of Zn was carried out with the aid of ion exchange on Dowex 1. The finding of Schlesinger and Coon that the hydrolysis proceeds from ATP to ADP and then slowly to AMP was confirmed. The kinetics of the first phase of the reaction was found to depend on the molar ratio of Zn/ATP in the reaction mixture. Mg ions in the presence of Zn ions have an accelerating effect on the rate of hydrolysis of ATP. This suggests strongly that both activities—ATPase and PPase—are manifestations of the same active group in the protein molecule of crystalline pyrophosphatase

    CRYSTALLINE SOYBEAN TRYPSIN INHIBITOR : II. GENERAL PROPERTIES

    Get PDF
    A study has been made of the general properties of crystalline soybean trypsin inhibitor. The soy inhibitor is a stable protein of the globulin type of a molecular weight of about 24,000. Its isoelectric point is at pH 4.5. It inhibits the proteolytic action approximately of an equal weight of crystalline trypsin by combining with trypsin to form a stable compound. Chymotrypsin is only slightly inhibited by soy inhibitor. The reaction between chymotrypsin and the soy inhibitor consists in the formation of a reversibly dissociable compound. The inhibitor has no effect on pepsin. The inhibiting action of the soybean inhibitor is associated with the native state of the protein molecule. Denaturation of the soy protein by heat or acid or alkali brings about a proportional decrease in its inhibiting action on trypsin. Reversal of denaturation results in a proportional gain in the inhibiting activity. Crystalline soy protein when denatured is readily digestible by pepsin, and less readily by chymotrypsin and by trypsin. Methods are given for measuring trypsin and inhibitor activity and also protein concentration with the aid of spectrophotometric density measurements at 280 mµ

    SYNERESIS AND SWELLING OF GELATIN

    Get PDF
    1. When solid blocks of isoelectric gelatin are placed in cold distilled water or dilute buffer of pH 4.7, only those of a gelatin content of more than 10 per cent swell, while those of a lower gelatin content not only do not swell but actually lose water. 2. The final quantity of water lost by blocks of dilute gelatin is the same whether the block is immersed in a large volume of water or whether syneresis has been initiated in the gel through mechanical forces such as shaking, pressure, etc., even in the absence of any outside liquid, thus showing that syneresis is identical with the process of negative swelling of dilute gels when placed in cold water, and may be used as a convenient term for it. 3. Acid- or alkali-containing gels give rise to greater syneresis than isoelectric gels, after the acid or alkali has been removed by dialysis. 4. Salt-containing gels show greater syneresis than salt-free gels of the same pH, after the salt has been washed away. 5. The acid and alkali and also the salt effect on syneresis of gels disappears at a gelatin concentration above 8 per cent. 6. The striking similarity in the behavior of gels with respect to syneresis and of gelatin solutions with respect to viscosity suggests the probability that both are due to the same mechanism, namely the mechanism of hydration of the micellæ in gelatin by means of osmosis as brought about either by diffusible ions, as in the presence of acid or alkali, or by the soluble gelatin present in the micellæ. The greater the pressures that caused swelling of the micellæ while the gelatin was in the sol state, the greater is the loss of water from the gels when the pressures are removed. 7. A quantitative study of the loss of water by dilute gels of various gelatin content shows that the same laws which have been found by Northrop to hold for the swelling of gels of high concentrations apply also to the process of losing water by dilute gels, i.e. to the process of syneresis. The general behavior is well represented by the equations: See PDF for Equation and See PDF for Equation where P1 = osmotic pressure of the soluble gelatin in the gel, P2 = stress on the micellæ in the gelatin solution before setting, Ke = bulk modulus of elasticity, Vo = volume of water per gram of dry gelatin at setting and Ve = volume of water per gram of gelatin at equilibrium
    • …
    corecore