396 research outputs found
Absolute Continuity Theorem for Random Dynamical Systems on
In this article we provide a proof of the so called absolute continuity
theorem for random dynamical systems on which have an invariant
probability measure. First we present the construction of local stable
manifolds in this case. Then the absolute continuity theorem basically states
that for any two transversal manifolds to the family of local stable manifolds
the induced Lebesgue measures on these transversal manifolds are absolutely
continuous under the map that transports every point on the first manifold
along the local stable manifold to the second manifold, the so-called
Poincar\'e map or holonomy map. In contrast to known results, we have to deal
with the non-compactness of the state space and the randomness of the random
dynamical system.Comment: 46 page
A stochastic perturbation of inviscid flows
We prove existence and regularity of the stochastic flows used in the
stochastic Lagrangian formulation of the incompressible Navier-Stokes equations
(with periodic boundary conditions), and consequently obtain a
\holderspace{k}{\alpha} local existence result for the Navier-Stokes
equations. Our estimates are independent of viscosity, allowing us to consider
the inviscid limit. We show that as , solutions of the stochastic
Lagrangian formulation (with periodic boundary conditions) converge to
solutions of the Euler equations at the rate of .Comment: 13 pages, no figures
A stochastic-Lagrangian particle system for the Navier-Stokes equations
This paper is based on a formulation of the Navier-Stokes equations developed
by P. Constantin and the first author (\texttt{arxiv:math.PR/0511067}, to
appear), where the velocity field of a viscous incompressible fluid is written
as the expected value of a stochastic process. In this paper, we take
copies of the above process (each based on independent Wiener processes), and
replace the expected value with times the sum over these
copies. (We remark that our formulation requires one to keep track of
stochastic flows of diffeomorphisms, and not just the motion of particles.)
We prove that in two dimensions, this system of interacting diffeomorphisms
has (time) global solutions with initial data in the space
\holderspace{1}{\alpha} which consists of differentiable functions whose
first derivative is H\"older continuous (see Section \ref{sGexist} for
the precise definition). Further, we show that as the system
converges to the solution of Navier-Stokes equations on any finite interval
. However for fixed , we prove that this system retains roughly
times its original energy as . Hence the limit
and do not commute. For general flows, we only
provide a lower bound to this effect. In the special case of shear flows, we
compute the behaviour as explicitly.Comment: v3: Typo fixes, and a few stylistic changes. 17 pages, 2 figure
L\'evy-areas of Ornstein-Uhlenbeck processes in Hilbert-spaces
In this paper we investigate the existence and some useful properties of the
L\'evy areas of Ornstein-Uhlenbeck processes associated to Hilbert-space-valued
fractional Brownian-motions with Hurst parameter . We prove
that this stochastic area has a H\"older-continuous version with sufficiently
large H\"older-exponent and that can be approximated by smooth areas. In
addition, we prove the stationarity of this area.Comment: 18 page
On the harmonic measure of stable processes
Using three hypergeometric identities, we evaluate the harmonic measure of a
finite interval and of its complementary for a strictly stable real L{\'e}vy
process. This gives a simple and unified proof of several results in the
literature, old and recent. We also provide a full description of the
corresponding Green functions. As a by-product, we compute the hitting
probabilities of points and describe the non-negative harmonic functions for
the stable process killed outside a finite interval
Statistical Analysis of a Semilinear Hyperbolic System Advected by a White in Time Random Velocity Field
We study a system of semilinear hyperbolic equations passively advected by
smooth white noise in time random velocity fields. Such a system arises in
modeling non-premixed isothermal turbulent flames under single-step kinetics of
fuel and oxidizer. We derive closed equations for one-point and multi-point
probability distribution functions (PDFs) and closed form analytical formulas
for the one point PDF function, as well as the two-point PDF function under
homogeneity and isotropy. Exact solution formulas allows us to analyze the
ensemble averaged fuel/oxidizer concentrations and the motion of their level
curves. We recover the empirical formulas of combustion in the thin reaction
zone limit and show that these approximate formulas can either underestimate or
overestimate average concentrations when reaction zone is not tending to zero.
We show that the averaged reaction rate slows down locally in space due to
random advection induced diffusion; and that the level curves of ensemble
averaged concentration undergo diffusion about mean locations.Comment: 18 page
- …