320 research outputs found

    Formation of Galactic Center Magnetic Loops

    Full text link
    A survey for the molecular clouds in the Galaxy with NANTEN mm telescope has discovered molecular loops in the Galactic center region. The loops show monotonic gradients of the line of sight velocity along the loops and the large velocity dispersions towards their foot points. It is suggested that these loops are explained in terms of the buoyant rise of magnetic loops due to the Parker instability. We have carried out global three-dimensional magneto-hydrodynamic simulations of the gas disk in the Galactic center. The gravitational potential is approximated by the axisymmetric potential proposed by Miyamoto & Nagai (1975). At the initial state, we assume a warm (~ 10^4 K) gas torus threaded by azimuthal magnetic fields. Self-gravity and radiative cooling of the gas are ignored. We found that buoyantly rising magnetic loops are formed above the differentially rotating, magnetically turbulent disk. By analyzing the results of global MHD simulations, we have identified individual loops, about 180 in the upper half of the disk, and studied their statistical properties such as their length, width, height, and velocity distributions along the loops. Typical length and height of a loop are 1kpc and 200pc, respectively. The line of sight velocity changes linearly along a loop and shows large dispersions around the foot-points. Numerical results indicate that loops emerge preferentially from the region where magnetic pressure is large. We argue that these properties are consistent with those of the molecular loops discovered by NANTEN.Comment: 16pages, 10figures. Accepted for publication in PASJ. Replace to higher resolution versio

    METEOROLOGICAL DATA AT MIZUHO STATION, ANTARCTICA IN 1984

    Get PDF

    NPR Hair Modeling with Parametric Clumps

    Get PDF
    This paper presents a modeling method for NPR hair composed of parametric 3D clumps. The clump parameters are not only for modifying a single clump but also for modifying all or large part of clumps similarly and simultaneously, and then a user can create a hairstyle only by adjusting the parameters. Our experiments show that even naive users can model a variety of hairstyles with little effort.2017 International Conference on Cyberworlds CW 2017, 20-22 September, 2017, Chester, United Kingdo

    Color2Hatch: conversion of color to hatching for low-cost printing

    Get PDF
    In this paper, we propose Color2Hatch, a decolorization method for business/presentation graphics. In Color2Hatch, each region represented as a closed path and uniformly colored in scalable vector graphics (SVG) is converted to a region hatched in black and white. From the characteristics of business graphics, the hatching patterns are designed to represent mainly the hue in the region; additionally, lightness and saturation can also be reflected. To discriminate subtle differences between colors, attached short line segments, zigzag lines, and wave lines are used in hatching by analogy to a clock. Compared with the existing decolorization methods, for example, grayscale conversion and texturing, our method is superior in the discrimination of regions, suitable for low-cost black and white printing that meets real-world needs

    Discovery of Molecular Loop 3 in the Galactic Center: Evidence for a Positive-Velocity Magnetically Floated Loop towards L=355∘−359∘L=355^\circ-359^\circ

    Full text link
    We have discovered a molecular dome-like feature towards 355∘≤l≤359∘355^{\circ} \leq l \leq 359^{\circ} and 0∘≤b≤2∘0^{\circ} \leq b \leq 2^{\circ}. The large velocity dispersions of 50--100 km s−1^{-1} of this feature are much larger than those in the Galactic disk and indicate that the feature is located in the Galactic center, probably within ∼1\sim1 kpc of Sgr A∗^{*}. The distribution has a projected length of ∼600\sim600 pc and height of ∼300\sim300 pc from the Galactic disk and shows a large-scale monotonic velocity gradient of ∼130\sim130 km s −1^{-1} per ∼600\sim600 pc. The feature is also associated with HI gas having a more continuous spatial and velocity distribution than that of 12^{12}CO. We interpret the feature as a magnetically floated loop similar to loops 1 and 2 and name it "loop 3". Loop 3 is similar to loops 1 and 2 in its height and length but is different from loops 1 and 2 in that the inner part of loop 3 is filled with molecular emission. We have identified two foot points at the both ends of loop 3. HI, 12^{12}CO and 13^{13}CO datasets were used to estimate the total mass and kinetic energy of loop 3 to be \sim3.0 \times 10^{6} \Mo and ∼1.7×1052\sim1.7 \times 10^{52} ergs. The huge size, velocity dispersions and energy are consistent with the magnetic origin the Parker instability as in case of loops 1 and 2 but is difficult to be explained by multiple stellar explosions. We argue that loop 3 is in an earlier evolutionary phase than loops 1 and 2 based on the inner-filled morphology and the relative weakness of the foot points. This discovery indicates that the western part of the nuclear gas disk of ∼1\sim1 kpc radius is dominated by the three well-developed magnetically floated loops and suggests that the dynamics of the nuclear gas disk is strongly affected by the magnetic instabilities.Comment: 30 pages, 10 figures. High resolution figures are available at http://www.a.phys.nagoya-u.ac.jp/~motosuji/fujishita09_figs

    A Detailed Observational Study of Molecular Loops 1 and 2 in the Galactic Center

    Full text link
    Fukui et al. (2006) discovered two huge molecular loops in the Galactic center located in (l, b) ~ (355 deg-359 deg, 0 deg-2 deg) in a large velocity range of -180-40 km s^-1. Following the discovery, we present detailed observational properties of the two loops based on NANTEN 12CO(J=1-0) and 13CO(J=1-0) datasets at 10 pc resolution including a complete set of velocity channel distributions and comparisons with HI and dust emissions as well as with the other broad molecular features. We find new features on smaller scales in the loops including helical distributions in the loop tops and vertical spurs. The loops have counterparts of the HI gas indicating that the loops include atomic gas. The IRAS far infrared emission is also associated with the loops and was used to derive an X-factor of 0.7(+/-0.1){\times}10^20 cm^-2 (K km s^-1)^-1 to convert the 12CO intensity into the total molecular hydrogen column density. From the 12CO, 13CO, H I and dust datasets we estimated the total mass of loops 1 and 2 to be ~1.4 {\times} 106 Msun and ~1.9 {\times} 10^6 Msun, respectively, where the H I mass corresponds to ~10-20% of the total mass and the total kinetic energy of the two loops to be ~10^52 ergs. An analysis of the kinematics of the loops yields that the loops are rotating at ~47 km s-1 and expanding at ~141 km s^-1 at a radius of 670 pc from the center. Fukui et al. (2006) presented a model that the loops are created by the magnetic flotation due to the Parker instability with an estimated magnetic field strength of ~150 {\mu}G. We present comparisons with the recent numerical simulations of the magnetized nuclear disk by Machida et al. (2009) and Takahashi et al. (2009) and show that the theoretical results are in good agreements with the observations. The helical distributions also suggest that some magnetic instability plays a role similarly to the solar helical features.Comment: 40 pages, 22 figures, submitted to publication in PAS

    Similarity between the Molecular Loops in the Galactic Center and the Solar Chromospheric Arch Filaments

    Full text link
    We carried out two-dimensional magnetohydrodynamic simulations of the Galactic gas disk to show that the dense loop-like structures discovered by the Galactic center molecular cloud survey by NANTEN 4 m telescope can be formed by the buoyant rise of magnetic loops due to the Parker instability. At the initial state, we assumed a gravitationally stratified disk consisting of the cool layer (T∼103T \sim 10^3 K), warm layer (T∼104T \sim 10^4 K), and hot layer (T∼105T \sim 10^5 K). Simulation box is a local part of the disk containing the equatorial plane. The gravitational field is approximated by that of a point mass at the galactic center. The self-gravity, and the effects of the galactic rotation are ignored. Numerical results indicate that the length of the magnetic loops emerging from the disk is determined by the scale height of the hot layer (∼\sim 100 pc at 1 kpc from the Galactic center). The loop length, velocity gradient along the loops and large velocity dispersions at their foot points are consistent with the NANTEN observations. We also show that the loops become top-heavy when the curvature of the loop is sufficiently small, so that the rising loop accumulates the overlying gas faster than sliding it down along the loop. This mechanism is similar to that of the formation of solar chromospheric arch filaments. The molecular loops emerge from the low temperature layer just like the dark filaments observed in the Hα\alpha image of the emerging flux region of the sun.Comment: 23 pages, 13 figures. Accepted for publication in PAS

    Development of a shutterless continuous rotation method using an X-ray CMOS detector for protein crystallography

    Get PDF
    A shutterless continuous rotation method using an X-ray complementary metal-oxide semiconductor (CMOS) detector has been developed for high-speed, precise data collection in protein crystallography. The new method and detector were applied to the structure determination of three proteins by multi- and single-wavelength anomalous diffraction phasing and have thereby been proved to be applicable in protein crystallography
    • …
    corecore