6 research outputs found
Scc1/Rad21/Mcd1 Is Required for Sister Chromatid Cohesion and Kinetochore Function in Vertebrate Cells
AbstractProteolytic cleavage of the cohesin subunit Scc1 is a consistent feature of anaphase onset, although temporal differences exist between eukaryotes in cohesin loss from chromosome arms, as distinct from centromeres. We describe the effects of genetic deletion of Scc1 in chicken DT40 cells. Scc1 loss caused premature sister chromatid separation but did not disrupt chromosome condensation. Scc1 mutants showed defective repair of spontaneous and induced DNA damage. Scc1-deficient cells frequently failed to complete metaphase chromosome alignment and showed chromosome segregation defects, suggesting aberrant kinetochore function. Notably, the chromosome passenger INCENP did not localize normally to centromeres, while the constitutive kinetochore proteins CENP-C and CENP-H behaved normally. These results suggest a role for Scc1 in mitotic regulation, along with cohesion
Genetic Evidence for Single-Strand Lesions Initiating Nbs1-Dependent Homologous Recombination in Diversification of Ig V in Chicken B Lymphocytes
Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig) V genes through HR (Ig gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3′ single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1p70) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate—though not the fidelity—of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3′ to 5′ single-strand–specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate—single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases
ドウブツ サイボウ ノ DNA カキョウザイ ノ タイセイ ニワ フクスウ ノ DNA シュウフク ケイロ ガ カンヨスル
京都大学0048新制・課程博士博士(医学)甲第12512号医博第3005号新制||医||928(附属図書館)UT51-2006-K235京都大学大学院医学研究科脳統御医科学系専攻(主査)教授 藤堂 剛, 教授 丹羽 太貫, 教授 小松 賢志学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA