654 research outputs found

    ASCA Observation of the Low-Luminosity Seyfert 1.5 Galaxy NGC 5033

    Full text link
    We present the results of an ASCA observation of the low-luminosity Seyfert 1.5 galaxy NGC 5033. A point-like X-ray source with a luminosity of 2.3x10^{41} erg s^{-1} in the 2--10 keV band (at 18.7 Mpc; Tully 1988, AAA045.002.054) was detected at the nucleus. The X-ray light curve shows variability on a timescale of ~10^4 s with an amplitude of ~20%. The X-ray continuum is represented by a weakly absorbed (N_H~9x10^{20} {cm^{-2}) power-law with a photon index of 1.72+/-0.04, which is quite similar to Seyfert 1 galaxies with higher luminosities. A Fe Kalpha emission line is detected at 6.40^{+0.08}_{-0.06} keV (redshift corrected) and the equivalent width is 290+/-100 eV. The line width is unresolved. The narrower line width and larger equivalent width compared to Seyfert 1s imply that fluorescent Fe Kalpha emission from matter further out from the center than the accretion disk significantly contributes to the observed Fe Kalpha line. We suggest that fluorescent Fe Kalpha emission from the putative torus contributes to the observed Fe Kalpha line.Comment: 17 pages, To appear in PASJ, Vol. 51, No.

    The X-Ray Spectral Variability of Mrk 766

    Get PDF
    Analysis results from ASCA and ROSAT observations of the narrow-line Seyfert 1 galaxy Mrk 766 are reported. In the ASCA observation we observed rapid variability with a doubling time scale of 1000 seconds. A spectral variability event was observed in which the spectrum softened and hardened above and below ~1 keV, respectively, as the flux increased. The spectra could be modeled with 5 components: a power law, warm absorber, iron K(alpha) line and soft excess component flux. The spectral variability resulted from a highly significant change in the intrinsic photon law index from Gamma ~1.6 to ~2.0, an increase in the warm absorber ionization, and a marginally significant decrease in the soft component normalization. A ~100 eV equivalent width narrow iron K(alpha) line was detected in the high state spectrum. Spectral hardening during flux increases was observed in three ROSAT observations. The change in intrinsic photon index and disappearance of the soft excess component in the ASCA spectra can be explained as a transition from a first order pair reprocessed spectrum to a pair cascade brought about by a sudden increase in the injected electron Lorentz factor. The change in the ionization of the warm absorber, though model dependent, could correspond to the increase in flux at the oxygen edges resulting from the spectral index change. The ROSAT spectral variability can be interpreted by variable intensity hard power law and a relatively nonvarying soft component, possibly primary disk emission. These results are compared with those reported from other narrow-line Seyfert 1 galaxies.Comment: 29 pages using (AASTeX) aaspp4.sty and 18 Postscript figures. To appear in the September 1, 1996, issue of The Astrophysical Journa

    Iron K-alpha line profiles driven by non-axisymmetric illumination

    Full text link
    Previous calculations of Fe K-alpha line profiles are based on axisymmetric emissivity laws. In this paper, we show line profiles driven by non-axial symmetric illumination which results from an off-axis X-ray point source. We find that source location and motion have significant effects on the red wing and blue horn of the line profiles. The disk region under the source will receive more flux, which is the most important factor to affect the line profiles. We suggest that at least part of the variation in Fe K-alpha line profiles is caused by the motion of X-ray sources. Future observations of Fe K-alpha line profiles will provide more information about the distribution and motion of the X-ray sources around black holes, and hence the underlying physics.Comment: 10 pages, 3 figures, accepted for the publication in MNRA

    Detection of an X-ray periodicity in the Seyfert galaxy IRAS18325-5926

    Get PDF
    We report the detection of a 58 ks (16 hr) periodicity in the 0.5-10 keV X-ray light curve of the Seyfert galaxy IRAS18325-5926 (Fairall49), obtained from a 5-day ASCA observation. Nearly 9 cycles of the periodic variation are seen; it shows no strong energy dependence and has an amplitude of about 15 per cent. Unlike most other well-studied Seyfert galaxies, there is no evidence for strong power-law red noise in the X-ray power spectrum of IRAS18325-5926. Scaling from the QPOs found in Galactic black hole candidates suggests that the mass of the black hole in IRAS18325-5926 is (6-40) million solar masses.Comment: 5 pages, 4 Postscript figures, to be published in MNRA

    The Infocus Hard X-ray Telescope: Pixellated CZT Detector/Shield Performance and Flight Results

    Get PDF
    The CZT detector on the Infocus hard X-ray telescope is a pixellated solid-state device capable of imaging spectroscopy by measuring the position and energy of each incoming photon. The detector sits at the focal point of an 8m focal length multilayered grazing incidence X-ray mirror which has significant effective area between 20--40 keV. The detector has an energy resolution of 4.0keV at 32keV, and the Infocus telescope has an angular resolution of 2.2 arcminute and a field of view of about 10 arcminutes. Infocus flew on a balloon mission in July 2001 and observed Cygnus X-1. We present results from laboratory testing of the detector to measure the uniformity of response across the detector, to determine the spectral resolution, and to perform a simple noise decomposition. We also present a hard X-ray spectrum and image of Cygnus X-1, and measurements of the hard X-ray CZT background obtained with the SWIN detector on Infocus.Comment: To appear in the proceedings of the SPIE conference "Astronomical Telescopes and Instrumentation", #4851-116, Kona, Hawaii, Aug. 22-28, 2002. 12 pages, 9 figure

    The variable OVIII Warm Absorber in MCG-6-30-15

    Get PDF
    We present the results of a 4 day ASCA observation of the Seyfert galaxy MCG-6-30-15, focussing on the nature of the X-ray absorption by the warm absorber, characterizd by the K-edges of the intermediately ionized oxygen, OVII and OVIII. We confirm that the column density of OVIII changes on a timescale of 104\sim 10^4~s when the X-ray continuum flux decreases. The significant anti-correlation of column density with continuum flux gives direct evidence that the warm absorber is photoionized by the X-ray continuum. From the timescale of the variation of the OVIII column density, we estimate that it originates from gas within a radius of about 10^{17}\cm of the central engine. In contrast, the depth of the OVII edge shows no response to the continuum flux, which indicates that it originates in gas at larger radii. Our results strongly suggest that there are two warm absorbing regions; one located near or within the Broad Line Region, the other associated with the outer molecular torus, scattering medium or Narrow Line Region.Comment: 8 pages (including figures) uuencoded gziped PS file. Submitted to Publications of the Astronomical Society of Japa

    The X-ray Spectrum of the Rapid Burster using the Chandra HETGS

    Get PDF
    We present observations of the Rapid Burster (RB, also known as MXB 1730-335) using the Chandra High Energy Transmission Grating Spectrometer. The average interval between type II (accretion) bursts was about 40 s. There was one type I (thermonuclear flash) burst and about 20 "mini-bursts" which are probably type II bursts whose peak flux is 10-40% of the average peak flux of the other type II bursts. The time averaged spectra of the type II bursts are well fit by a blackbody with a temperature of kT = 1.6 keV, a radius of 8.9 km for a distance of 8.6 kpc, and an interstellar column density of 1.7e22 per sq. cm. No narrow emission or absorption lines were clearly detected. The 3 sigma upper limits to the equivalent widths of any features are < 10 eV in the 1.1-7.0 keV band and as small as 1.5 eV near 1.7 keV. We suggest that Comptonization destroys absorption features such as the resonance line of Fe XXVI.Comment: 10 pages, 4 figures, accepted for publication in AJ (with minor changes and enhanced discussion of the instrument configuration

    Combined Analysis of X-Ray Spectra of NGC 3227

    Full text link
    The 1.5 Seyfert galaxy NGC 3227 has been observed by several X-ray missions. We carried out combined analysis of the data obtained by more recent major observations of this source - two observations performed by XMM-Newton in 2000 and 2006 and six observations performed by Suzaku in 2008. A unified model was constructed which is consistent with all eight of the observations by the two satillites with large intensity and spectral changes. The model consists of a hard power law with the spectral index of Gamma_Hard=1.4-1.7 which is interpreted as the Comptonized emission from the corona above an accretion disk. In the high flux states an additional soft excess component dominates, which is consistent with a model with either a steeper power law with Gamma_Soft=3.3-3.85 or the warm Comptonization component. These emissions from the central engine are absorbed by a neutral partial covering material and warm absorbers. A reflection component and several emission lines are also present. We examined the relationship between the intrinsic luminosity and the absorbers' physical parameters such as the column density, which suggests that the source expanded significantly during the bright states where the soft excess is greatly enhanced.Comment: 24 pages, 5 tables, and 17 figure

    ASCA PV observations of the Seyfert 1 galaxy MCG-6-30-15 : rapid variability of the warm absorber

    Get PDF
    We present a detailed re-analysis of the two {\it ASCA} Performance Verification observations of the nearby Seyfert 1 galaxy MCG-6-30-15. Confirming the results of Fabian et al. (1994), we find definite evidence for the {\sc O\,vii} and {\sc O\,viii} K-shell absorption edges of the warm absorber and a doubling of the warm absorber column density within the 3 weeks separating the two observations. No intra-day {\it flux-correlated} variability of the warm absorber is found. However, we report the discovery of an `event' in which the warm absorber parameters temporarily change for \sim10\,000\thinspace s before returning to their original values. Possible interpretations are discussed but a contradiction remains: the constancy of the ionization state of the warm absorber argues that it lies at large distances from the central source whereas the short term change in column density argues for small distances. Fluorescent iron emission is examined. As found by Fabian et al. (1994), the iron line is broad and strong (equivalent width \sim300\thinspace eV). The line profile is also suggestive of it being skewed. Such a line would be expected from a relativistic accretion disk. We also find very rapid primary X-ray variability. Assuming relativistic beaming to be unimportant, the derived efficiency is comparable to the maximum obtainable from accretion onto a Schwarzschild black hole. Correlated variability outside of the energy range of {\it ASCA} might exceed this maximum, thus requiring efficient accretion onto a Kerr hole.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm
    corecore