62 research outputs found

    An Inequality Constrained SL/QP Method for Minimizing the Spectral Abscissa

    Full text link
    We consider a problem in eigenvalue optimization, in particular finding a local minimizer of the spectral abscissa - the value of a parameter that results in the smallest value of the largest real part of the spectrum of a matrix system. This is an important problem for the stabilization of control systems. Many systems require the spectra to lie in the left half plane in order for them to be stable. The optimization problem, however, is difficult to solve because the underlying objective function is nonconvex, nonsmooth, and non-Lipschitz. In addition, local minima tend to correspond to points of non-differentiability and locally non-Lipschitz behavior. We present a sequential linear and quadratic programming algorithm that solves a series of linear or quadratic subproblems formed by linearizing the surfaces corresponding to the largest eigenvalues. We present numerical results comparing the algorithms to the state of the art

    Reinforcement Learning Based on Real-Time Iteration NMPC

    Get PDF
    Reinforcement Learning (RL) has proven a stunning ability to learn optimal policies from data without any prior knowledge on the process. The main drawback of RL is that it is typically very difficult to guarantee stability and safety. On the other hand, Nonlinear Model Predictive Control (NMPC) is an advanced model-based control technique which does guarantee safety and stability, but only yields optimality for the nominal model. Therefore, it has been recently proposed to use NMPC as a function approximator within RL. While the ability of this approach to yield good performance has been demonstrated, the main drawback hindering its applicability is related to the computational burden of NMPC, which has to be solved to full convergence. In practice, however, computationally efficient algorithms such as the Real-Time Iteration (RTI) scheme are deployed in order to return an approximate NMPC solution in very short time. In this paper we bridge this gap by extending the existing theoretical framework to also cover RL based on RTI NMPC. We demonstrate the effectiveness of this new RL approach with a nontrivial example modeling a challenging nonlinear system subject to stochastic perturbations with the objective of optimizing an economic cost.Comment: accepted for the IFAC World Congress 202

    A Sequential Quadratic Programming Method for Optimization with Stochastic Objective Functions, Deterministic Inequality Constraints and Robust Subproblems

    Full text link
    In this paper, a robust sequential quadratic programming method of [1] for constrained optimization is generalized to problem with stochastic objective function, deterministic equality and inequality constraints. A stochastic line search scheme in [2] is employed to globalize the steps. We show that in the case where the algorithm fails to terminate in finite number of iterations, the sequence of iterates will converge almost surely to a Karush-Kuhn-Tucker point under the assumption of extended Mangasarian-Fromowitz constraint qualification. We also show that, with a specific sampling method, the probability of the penalty parameter approaching infinity is 0. Encouraging numerical results are reported
    corecore