4 research outputs found

    Molecular biogeography and host relations of a parasitoid fly

    Get PDF
    © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Successful geographic range expansion by parasites and parasitoids may also require host range expansion. Thus, the evolutionary advantages of host specialization may trade off against the ability to exploit new host species encountered in new geographic regions. Here, we use molecular techniques and confirmed host records to examine biogeography, population divergence, and host flexibility of the parasitoid fly, Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically by eavesdropping on male cricket calling songs; these songs vary greatly among the known host species of crickets. Using both nuclear and mitochondrial genetic markers, we (a) describe the geographical distribution and subdivision of genetic variation in O. ochracea from across the continental United States, the Mexican states of Sonora and Oaxaca, and populations introduced to Hawaii; (b) demonstrate that the distribution of genetic variation among fly populations is consistent with a single widespread species with regional host specialization, rather than locally differentiated cryptic species; (c) identify the more-probable source populations for the flies introduced to the Hawaiian islands; (d) examine genetic variation and substructure within Hawaii; (e) show that among-population geographic, genetic, and host song distances are all correlated; and (f) discuss specialization and lability in host-finding behavior in light of the diversity of cricket songs serving as host cues in different geographically separate populations

    Signatures of Insecticide Selection in the Genome of Drosophila melanogaster

    No full text
    Resistance to insecticides has evolved in multiple insect species, leading to increased application rates and even control failures. Understanding the genetic basis of insecticide resistance is fundamental for mitigating its impact on crop production and disease control. We performed a GWAS approach with the Drosophila Genetic Reference Panel (DGRP) to identify the mutations involved in resistance to two widely used classes of insecticides: organophosphates (OPs, parathion) and pyrethroids (deltamethrin). Most variation in parathion resistance was associated with mutations in the target gene Ace, while most variation in deltamethrin resistance was associated with mutations in Cyp6a23, a gene encoding a detoxification enzyme never previously associated with resistance. A “nested GWAS” further revealed the contribution of other loci: Dscam1 and trpl were implicated in resistance to parathion, but only in lines lacking Wolbachia. Cyp6a17, the paralogous gene of Cyp6a23, and CG7627, an ATP-binding cassette transporter, were implicated in deltamethrin resistance. We observed signatures of recent selective sweeps at all of these resistance loci and confirmed that the soft sweep at Ace is indeed driven by the identified resistance mutations. Analysis of allele frequencies in additional population samples revealed that most resistance mutations are segregating across the globe, but that frequencies can vary substantially among populations. Altogether, our data reveal that the widely used OP and pyrethroid insecticides imposed a strong selection pressure on natural insect populations. However, it remains unclear why, in Drosophila, resistance evolved due to changes in the target site for OPs, but due to a detoxification enzyme for pyrethroids

    Mangel und Überschuß an Phosphat

    No full text
    corecore