6,274 research outputs found
Applied analytical combustion/emissions research at the NASA Lewis Research Center
Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time
Effects of non-denumerable fixed points in finite dynamical systems
The motion of a spinning football brings forth the possible existence of a
whole class of finite dynamical systems where there may be non-denumerably
infinite number of fixed points. They defy the very traditional meaning of the
fixed point that a point on the fixed point in the phase space should remain
there forever, for, a fixed point can evolve as well! Under such considerations
one can argue that a free-kicked football should be non-chaotic.Comment: This paper is a replaced version to modify the not-so-true claim,
made unknowingly in the earlier version, of being first to propose the
peculiar dynamical systems as described in the paper. With respect to the
original workers, we present here our original finding
Semantically Guided Depth Upsampling
We present a novel method for accurate and efficient up- sampling of sparse
depth data, guided by high-resolution imagery. Our approach goes beyond the use
of intensity cues only and additionally exploits object boundary cues through
structured edge detection and semantic scene labeling for guidance. Both cues
are combined within a geodesic distance measure that allows for
boundary-preserving depth in- terpolation while utilizing local context. We
model the observed scene structure by locally planar elements and formulate the
upsampling task as a global energy minimization problem. Our method determines
glob- ally consistent solutions and preserves fine details and sharp depth
bound- aries. In our experiments on several public datasets at different levels
of application, we demonstrate superior performance of our approach over the
state-of-the-art, even for very sparse measurements.Comment: German Conference on Pattern Recognition 2016 (Oral
Fast Time Structure During Transient Microwave Brightenings: Evidence for Nonthermal Processes
Transient microwave brightenings (TMBs) are small-scale energy releases from
the periphery of sunspot umbrae, with a flux density two orders of magnitude
smaller than that from a typical flare. Gopalswamy et al (1994) first reported
the detection of the TMBs and it was pointed out that the radio emission
implied a region of very high magnetic field so that the emission mechanism has
to be gyroresonance or nonthermal gyrosynchrotron, but not free-free emission.
It was not possible to decide between gyroresonance and gyrosynchrotron
processes because of the low time resolution (30 s) used in the data analysis.
We have since performed a detailed analysis of the Very Large Array data with
full time resolution (3.3 s) at two wavelengths (2 and 3.6 cm) and we can now
adequately address the question of the emission mechanism of the TMBs. We find
that nonthermal processes indeed take place during the TMBs. We present
evidence for nonthermal emission in the form of temporal and spatial structure
of the TMBs. The fast time structure cannot be explained by a thermodynamic
cooling time and therefore requires a nonthermal process. Using the physical
parameters obtained from X-ray and radio observations, we determine the
magnetic field parameters of the loop and estimate the energy released during
the TMBs. The impulsive components of TMBs imply an energy release rate of 1.3
x 10^22 erg/s so that the thermal energy content of the TMBs could be less than
10^24 erg.Comment: 15 pages (Latex), 4 figures (eps). ApJ Letters in press (1997
Quantum integrable multi atom matter-radiation models with and without rotating wave approximation
New integrable multi-atom matter-radiation models with and without rotating
wave approximation (RWA) are constructed and exactly solved through algebraic
Bethe ansatz. The models with RWA are generated through ancestor model approach
in an unified way. The rational case yields the standard type of
matter-radiaton models, while the trigonometric case corresponds to their
q-deformations. The models without RWA are obtained from the elliptic case at
the Gaudin and high spin limit.Comment: 9 pages, no figure, talk presented in int. conf. NEEDS04 (Gallipoli,
Italy, July 2004
Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates
We theoretically study the Kelvin-Helmholtz instability in phase-separated
two-component Bose-Einstein condensates using the Gross-Pitaevskii and
Bogoliubov-de Gennes models. A flat interface between the two condensates is
shown to deform into sawtooth or Stokes-like waves, leading to the formation of
singly quantized vortices on the peaks and troughs of the waves. This scenario
of interface instability in quantum fluids is quite different from that in
classical fluids.Comment: 5 pages, 4 figure
On a choice of the Bondi radial coordinate and news function for the axisymmetric two-body problem
In the Bondi formulation of the axisymmetric vacuum Einstein equations, we
argue that the ``surface area'' coordinate condition determining the ``radial''
coordinate can be considered as part of the initial data and should be chosen
in a way that gives information about the physical problem whose solution is
sought. For the two-body problem, we choose this coordinate by imposing a
condition that allows it to be interpreted, near infinity, as the (inverse of
the) Newtonian potential. In this way, two quantities that specify the problem
-- the separation of the two particles and their mass ratio -- enter the
equations from the very beginning. The asymptotic solution (near infinity) is
obtained and a natural identification of the Bondi "news function" in terms of
the source parameters is suggested, leading to an expression for the radiated
energy that differs from the standard quadrupole formula but agrees with recent
non-linear calculations. When the free function of time describing the
separation of the two particles is chosen so as to make the new expression
agree with the classical result, closed-form analytic expressions are obtained,
the resulting metric approaching the Schwarzschild solution with time. As all
physical quantities are defined with respect to the flat metric at infinity,
the physical interpretation of this solution depends strongly on how these
definitions are extended to the near-zone and, in particular, how the "time"
function in the near-zone is related to Bondi's null coordinate.Comment: 13 pages, LaTeX, submitted to Classical and Quantum Gravity; v2
corrected a few typos and added some comments; v3 expanded discussion and
added references -- Rejected by CQG; v4: 8 pages revtex4 2 column,
extensively revised, submitted to Phys Rev D; v5: 21 pages revtex4 preprint;
further discussion of physical interpretation; v6: 21 pages revtex4 preprint
-- final version to appear in Phys. Rev. D (2006
Ferromagnetism and magneto-dielectric effect in insulating LaBiMn4/3Co2/3O6 thin films
High quality epitaxial thin films of LaBiMn4/3Co2/3O6 perovskite were
fabricated on (001)-oriented SrTiO3 and LaAlO3 substrates by the pulsed laser
deposition technique. Magnetization measurements reveal a strong magnetic
anisotropy and a ferromagnetic behavior that is in agreement with a
super-exchange interaction between Mn4+ and Co2+ ions, which are randomly
distributed in the B-site. A distinct anomaly is observed in the dielectric
measurements at 130K corresponding to the onset of the magnetic ordering,
suggesting a coupling. Above this temperature, the extrinsic Maxwell-Wagner
effect is dominating. Theses results are explained using the Raman
spectroscopic studies indicating a weak spin-lattice interaction around this
magnetic transition.Comment: Submitted to Appl. Phys. Lett. (2008
Algebraic approach in unifying quantum integrable models
A novel algebra underlying integrable systems is shown to generate and unify
a large class of quantum integrable models with given -matrix, through
reductions of an ancestor Lax operator and its different realizations. Along
with known discrete and field models a new class of inhomogeneous and impurity
models are obtained.Comment: Revtex, 6 pages, no figure, revised version to be published in Phys.
Rev. Lett., 199
- …