16 research outputs found

    Opportunistic Relay Selection over Generalized Fading and Inverse Gamma Composite Fading Mixed Multicast Channels : A Secrecy Tradeoff

    Get PDF
    This work was supported in part by the National Research Foundation of Korea funded by the Korean Government, Ministry of Science and ICT, under Grant ICT-NRF-2020R1A2B5B02002478; and in part by Sejong University through its Faculty Research Program under Grant 20212023.Peer reviewedPublisher PD

    Impact of Correlation and Pointing Error on Secure Outage Performance over Arbitrary Correlated Nakagami Turbulent Fading Mixed RF-FSO Channel

    Get PDF
    Funding Information: Manuscript received September 8, 2020; revised February 11, 2021; accepted February 14, 2021. Date of publication February 16, 2021; date of current version March 10, 2021. This research was supported in part by the National Research Foundation of Korea grant funded by the Korean government (Ministry of Science and ICT; 2019R1A2C1083988), in part by the Ministry of Science and ICT, Korea, under the Information Technology Research Center support program (IITP-2020-2016-0-00313) supervised by the Institute for Information & Communications Technology Planning & Evaluation, and in part by Sejong University through its faculty research program (20212023). (Sheikh Habibul Islam, A. S. M. Badrud-duza, and S. M. R. Islam contributed equally to this work and co-first authors.) Corresponding authors: A. S. M. Badrudduza; Heejung Yu (e-mail: [email protected]; [email protected]).)Peer reviewedPublisher PD

    Security at the Physical Layer over GG Fading and mEGG Turbulence Induced RF-UOWC Mixed System

    Get PDF
    This work was supported in part by the National Research Foundation of Korea grant funded by the Korean Government (Ministry of Science and ICT) under Grant 2019R1A2C1083988, in part by the Ministry of Science and ICT, South Korea, under the Information Technology Research Center Support Program supervised by the Institute for Information and Communications Technology Planning and Evaluation, under Grant IITP-2021-2016-0-00313, and in part by Sejong University through its Faculty Research Program under Grant 20202021.Peer reviewedPublisher PD

    Enhancing security of TAS/MRC-based mixed RF-UOWC system with induced underwater turbulence effect

    Get PDF
    Post commercial deployment of fifth-generation (5G) technologies, the consideration of sixth-generation (6G) networks is drawing remarkable attention from research communities. Researchers suggest that similar to 5G, 6G technology must be human-centric where high secrecy together with high data rate will be the key features. These challenges can be easily overcome utilizing PHY security techniques over high-frequency free-space or underwater optical wireless communication (UOWC) technologies. But in long-distance communication, turbulence components drastically affect the optical signals, leading to the invention of the combination of radio-frequency (RF) links with optical links. This article deals with the secrecy performance analysis of a mixed RF-UOWC system where an eavesdropper tries to intercept RF communications. RF and optical links undergo η−μ and mixture exponential generalized Gamma distributions, respectively. To keep pace with the high data rate of the optical technologies, we exploit the antenna selection scheme at the source and maximal ratio combining diversity at the relay and eavesdropper, while the eavesdropper is unaware of the antenna selection scheme. We derive closed-form expressions of average secrecy capacity, secrecy outage probability, and probability of strictly positive secrecy capacity to demonstrate the impacts of the system parameters on the secrecy behavior. Finally, the expressions are corroborated via Monte Carlo simulations

    On the Intercept Probability and Secure Outage Analysis of Mixed (α-κ-μ)-Shadowed and Málaga Turbulent Models

    Get PDF
    This work was supported in part by the National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT) under Grant NRF 2020R1A2B5B02002478, and in part by Sejong University through its Faculty Research Program under Grant 20212023Peer reviewedPublisher PD

    Secrecy Performance Analysis of Mixed α - μ and Exponentiated Weibull RF-FSO Cooperative Relaying System

    Get PDF
    Funding Information: This work was supported in part by the National Research Foundation of Korea—Grant funded by the Korean Government under Grant Ministry of Science and ICT-NRF-2020R1A2B5B02002478, and in part by Sejong University through its Faculty Research Program under Grant 20212023.Peer reviewedPublisher PD

    On secrecy performance of mixed generalized Gamma and Málaga RF-FSO variable gain relaying channel

    Get PDF
    The emergence of an array of new wireless networks has led researchers to evaluate the prospect of utilizing the physical properties of the wireless medium in order to design secure systems. In this paper, the physical layer secrecy performance of a mixed radio frequency-free space optical (RF-FSO) system with variable gain relaying scheme is investigated in the presence of an eavesdropper. We assume that the eavesdropper can wiretap the transmitted confidential data from the RF link only. It is further assumed that the main and eavesdropper RF links are modeled as generalized Gamma (GG) fading channel, and the free space optical (FSO) link experiences Málaga turbulence with pointing error impairment. Our primary concern is to protect this confidential information from being wiretapped. Besides pointing error, the atmospheric turbulence and two types of detection techniques (i.e. heterodyne detection and intensity modulation with direct detection) are also taken into consideration. Utilizing amplify-and-forward (AF) scheme, the novel mathematical closed-form expressions for average secrecy capacity, lower bound of secrecy outage probability, and strictly positive secrecy capacity are derived. As both the links (RF and FSO) undergo generalized fading channels, the derived expressions are also general. We present a unification of some existing works utilizing the proposed model to better clarify the novelty of this work. Finally, all the derived expressions are justified via Monte-Carlo simulations

    Size-Dependent Antibacterial, Antidiabetic, and Toxicity of Silver Nanoparticles Synthesized Using Solvent Extraction of <i>Rosa indica</i> L. Petals

    No full text
    In this study, silver nanoparticles (AgNPs) are synthesized through a green approach by employing Rosa indica L. petal (RE) extracts as reducing and stabilizing agents, which are extracted using three different solvents: ethanol (Et), acetone (Ac), and water (Aq). The phase formation of the AgNPs is confirmed using X-ray diffraction (XRD). Morphological analysis is performed using a field-emission scanning electron microscope (FESEM), which reveals that the AgNPs are spherical in shape. The size is estimated using ImageJ software, which is found to be ~12, 18, and 770 nm for RE-Ac-Ag, RE-Et-Ag, and RE-Aq-Ag, respectively. The phytochemicals of Rosa indica L. petals involved in the formation of the AgNPs are studied using Fourier transform infrared spectroscopy (FTIR). Finally, these materials are studied for their antibacterial, antidiabetic, antioxidant, and hemolytic activity, as well as cell toxicity properties. The materials, RE-Ac-Ag and RE-Et-Ag, are found to be more effective than RE-Aq-Ag in inhibiting E. coli (Gram-negative bacteria) and S. aureus (Gram-positive bacteria). Hemolytic studies reveal that all of the samples show concentration-dependent activity up to 50 µg/mL. RE-Ac-Ag and RE-Et-Ag exhibit nonhemolytic behavior, whereas RE-Aq-Ag remains nonhemolytic until 100 µg/mL. The antidiabetic ability of the AgNPs is evaluated using α-amylase inhibition assay (DNSA assay) and α-glucosidase inhibition assay. The results are found to be effective, with IC50 values of α-amylase and α-glycosidase being 50, 50, and 75 µg/mL for RE-Et-Ag, RE-Ac-Ag, and RE-Aq-Ag, respectively. DPPH assay shows that the AgNPs inhibited the antioxidants well, with IC50 values of 40 µg/mL for RE-Et-Ag and RE-Ac-Ag and 60 µg/mL for RE-Aq-Ag. The toxicity study reveals that the AgNPs show size- and concentration-dependent behavior. Overall, it is realized from the findings that RE-Ac-Ag, RE-Et-Ag, and RE-Aq-Ag show size-dependent antibacterial, antidiabetic, and toxicity properties
    corecore