45 research outputs found

    Hospital-based Diagnosis of Hemorrhagic Fever, Encephalitis, and Hepatitis in Cambodian Children

    Get PDF
    Surveillance was conducted for three clinical syndromes (hemorrhagic fever, encephalitis, and hepatitis) in Cambodian children admitted to the National Pediatric Hospital in Phnom Penh from July 1996 through September 1998. Acute- and convalescent-phase sera, and cerebrospinal fluid, when applicable, underwent diagnostic evaluation for infections with Dengue virus (DENV), Japanese encephalitis virus (JEV), and Hepatitis A, B, C, and E viruses. Of 621 children admitted with hemorrhagic fever, 499 (80%) were confirmed to have either primary or secondary DENV infection. DENV rates were as high as 10.6/100 hospital admissions in September 1998. Of 50 children with clinical encephalitis, 9 (18%) had serologic evidence of JEV infection. Forty-four children had clinical hepatitis, most (55%) due to Hepatitis A virus (HAV). One patient had Hepatitis B virus, and no patients had hepatitis C or E. This study identified a large number of children with vaccine-preventable diseases (JEV and HAV)

    Exploring evidence-policy linkages in health research plans: A case study from six countries

    Get PDF
    The complex evidence-policy interface in low and middle income country settings is receiving increasing attention. Future Health Systems (FHS): Innovations for Equity, is a research consortium conducting health systems explorations in six Asian and African countries: Bangladesh, India, China, Afghanistan, Uganda, and Nigeria. The cross-country research consortium provides a unique opportunity to explore the research-policy interface. Three key activities were undertaken during the initial phase of this five-year project. First, key considerations in strengthening evidence-policy linkages in health system research were developed by FHS researchers through workshops and electronic communications. Four key considerations in strengthening evidence-policy linkages are postulated: development context; research characteristics; decision-making processes; and stakeholder engagement. Second, these four considerations were applied to research proposals in each of the six countries to highlight features in the research plans that potentially strengthen the research-policy interface and opportunities for improvement. Finally, the utility of the approach for setting research priorities in health policy and systems research was reflected upon. These three activities yielded interesting findings. First, developmental consideration with four dimensions – poverty, vulnerabilities, capabilities, and health shocks – provides an entry point in examining research-policy interfaces in the six settings. Second, research plans focused upon on the ground realities in specific countries strengthens the interface. Third, focusing on research prioritized by decision-makers, within a politicized health arena, enhances chances of research influencing action. Lastly, early and continued engagement of multiple stakeholders, from local to national levels, is conducive to enhanced communication at the interface. The approach described has four main utilities: first, systematic analyses of research proposals using key considerations ensure such issues are incorporated into research proposals; second, the exact meaning, significance, and inter-relatedness of these considerations can be explored within the research itself; third, cross-country learning can be enhanced; and finally, translation of evidence into action may be facilitated. Health systems research proposals in low and middle income countries should include reflection on transferring research findings into policy. Such deliberations may be informed by employing the four key considerations suggested in this paper in analyzing research proposals

    Spread of artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin resistance in Plasmodium falciparum has emerged in Southeast Asia and now poses a threat to the control and elimination of malaria. Mapping the geographic extent of resistance is essential for planning containment and elimination strategies. METHODS: Between May 2011 and April 2013, we enrolled 1241 adults and children with acute, uncomplicated falciparum malaria in an open-label trial at 15 sites in 10 countries (7 in Asia and 3 in Africa). Patients received artesunate, administered orally at a daily dose of either 2 mg per kilogram of body weight per day or 4 mg per kilogram, for 3 days, followed by a standard 3-day course of artemisinin-based combination therapy. Parasite counts in peripheral-blood samples were measured every 6 hours, and the parasite clearance half-lives were determined. RESULTS: The median parasite clearance half-lives ranged from 1.9 hours in the Democratic Republic of Congo to 7.0 hours at the Thailand-Cambodia border. Slowly clearing infections (parasite clearance half-life >5 hours), strongly associated with single point mutations in the "propeller" region of the P. falciparum kelch protein gene on chromosome 13 (kelch13), were detected throughout mainland Southeast Asia from southern Vietnam to central Myanmar. The incidence of pretreatment and post-treatment gametocytemia was higher among patients with slow parasite clearance, suggesting greater potential for transmission. In western Cambodia, where artemisinin-based combination therapies are failing, the 6-day course of antimalarial therapy was associated with a cure rate of 97.7% (95% confidence interval, 90.9 to 99.4) at 42 days. CONCLUSIONS: Artemisinin resistance to P. falciparum, which is now prevalent across mainland Southeast Asia, is associated with mutations in kelch13. Prolonged courses of artemisinin-based combination therapies are currently efficacious in areas where standard 3-day treatments are failing. (Funded by the U.K. Department of International Development and others; ClinicalTrials.gov number, NCT01350856.)

    Comparative analysis of targeted next-generation sequencing for Plasmodium falciparum drug resistance markers

    No full text
    Well-defined molecular resistance markers are available for a range of antimalarial drugs, and molecular surveillance is increasingly important for monitoring antimalarial drug resistance. Different genotyping platforms are available, but these have not been compared in detail. We compared Targeted Amplicon Deep sequencing (TADs) using Ion Torrent PGM with Illumina MiSeq for the typing of antimalarial drug resistance genes. We developed and validated protocols to type the molecular resistance markers pfcrt, pfdhfr, pfdhps, pfmdr1, pfkelch, and pfcytochrome b, in Plasmodium falciparum for the Ion Torrent PGM and Illumina MiSeq sequencing platforms. With P. falciparum 3D7 and K1 as reference strains, whole blood samples (N = 20) and blood spots from Rapid Diagnostic Test (RDT) samples (N = 5) from patients with uncomplicated falciparum malaria from Ubon Ratchathani were assessed on both platforms and compared for coverage (average reads per amplicon), sequencing accuracy, variant accuracy, false positive rate, false negative rate, and alternative allele detection, with conventional Sanger sequencing as the reference method for SNP calling. Both whole blood and RDT samples could be successfully sequenced using the Ion Torrent PGM and Illumina MiSeq platforms. Coverage of reads per amplicon was higher with Illumina MiSeq (28,886 reads) than with Ion Torrent PGM (1754 reads). In laboratory generated artificial mixed infections, the two platforms could detect the minor allele down to 1% density at 500X coverage. SNPs calls from both platforms were in complete agreement with conventional Sanger sequencing. The methods can be multiplexed with up to 96 samples per run, which reduces cost by 86% compared to conventional Sanger sequencing. Both platforms, using the developed TAD protocols, provide an accurate method for molecular surveillance of drug resistance markers in P. falciparum, but Illumina MiSeq provides higher coverage than Ion Torrent PGM

    Molecular characterization of Plasmodium falciparum antifolate resistance markers in Thailand between 2008 and 2016

    No full text
    Background Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine–pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples. Methods Plasmodium falciparum DNA was collected from the Thailand–Myanmar, Thailand–Malaysia and Thailand–Cambodia borders during 2008–2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated. Results Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr–pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr–pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand–Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr–pfdhps haplotypes. In particular, the prevalence of pfdhfr–pfdhps, septuple mutation was observed in the Thailand–Myanmar (50%, 73/146) and Thailand–Cambodia (65%, 26/40) border. In Thailand–Malaysia border, majority of the pfdhfr–pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008–2016. Within the pfdhfr–pfdhps haplotypes, during 2008–2013 the pfdhps A/S436F mutation was observed only in Thailand–Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification. Conclusions Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation
    corecore