1,366 research outputs found

    Pre-merger electromagnetic counterparts of binary compact stars

    Get PDF
    We investigate emission signatures of binary compact star gravitational wave sources consisting of strongly magnetized neutron stars (NSs) and/or white dwarfs (WDs) in their late-time inspiral phase. Because of electromagnetic interactions between the magnetospheres of the two compact stars, a substantial amount of energy will be extracted, and the resultant power is expected to be 10381044\sim 10^{38} - 10^{44} erg/s in the last few seconds before the two stars merge, when the binary system contains a NS with a surface magnetic field 101210^{12} G. The induced electric field in the process can accelerate charged particles up to the EeV energy range. Synchrotron radiation is emitted from energetic electrons, with radiative energies reaching the GeV energy for binary NSs and the MeV energy for NS - WD or double WD binaries. In addition, a blackbody component is also presented and it peaks at several to hundreds keV for binary NSs and at several keV for NS - WD or double WD binaries. The strong angular dependence of the synchrotron radiation and the isotropic nature of the blackbody radiation lead to distinguishable modulation patterns between the two emission components. If coherent curvature radiation is presented, fast radio bursts could be produced. These components provide unique simultaneous electromagnetic signatures as precursors of gravitational wave events associated with magnetized compact star mergers and short gamma ray bursts (e.g., GRB 100717).Comment: 16 pages, 8 figures, 1 table. Minor corrections to match the version on Ap

    Circadian rest-activity rhythms predict cognitive function in early Parkinson's disease independently of sleep

    Full text link
    BACKGROUND: Cognitive impairment is a common and debilitating symptom of Parkinson's disease (PD), and its etiology is likely multifactorial. One candidate mechanism is circadian disruption. Although there is evidence of circadian abnormalities in PD, no studies have directly assessed their association with cognitive impairment. OBJECTIVES: Investigate whether circadian rest-activity rhythm is associated with cognitive function in PD independently of sleep. METHODS: Thirty-five participants with PD wore wrist actigraph monitors and completed sleep diaries for 7 to 10 days, then underwent neuropsychological testing. Rest-activity rhythm was characterized using nonparametric circadian rhythm analysis of actigraphy data. Objective sleep parameters were also estimated using actigraphy data. Hierarchical regression models assessed the independent contributions of sleep and rest-activity rhythm to cognitive performance. RESULTS: Less stable day-to-day rest-activity rhythm was associated with poorer executive, visuospatial, and psychomotor functioning, but not with memory. Hierarchical regressions showed that interdaily stability's contribution to cognitive performance was independent of sleep's contributions. Whereas sleep contributed to executive function, but not psychomotor or visuospatial performance, rest-activity rhythm stability significantly contributed to variance in all three of these domains, uniquely accounting for 14.4% to 17.6% of their performance variance. CONCLUSIONS: Our findings indicate that circadian rest-activity rhythm is associated with cognitive impairment independently of sleep. This suggests the possible utility of rest-activity rhythm as a biomarker for circadian function in PD. Future research should explore interventions to stabilize behavioral rhythms in order to strengthen circadian function, which, in turn, may reduce cognitive impairment in PD.R00 HL102241 - NHLBI NIH HHS; R01 AG048108 - NIA NIH HHSAccepted manuscrip

    A Case Report of a Metastatic Gastrointestinal Stromal Tumor Occurring in Femur

    Get PDF
    Gastrointestinal stromal tumors (GISTs) are mesenchymal neoplasms that most commonly affect the stomach or small intestine, but can occur anywhere throughout the gastrointestinal tract. To the best of our knowledge, few cases have been reported in the literature about the femur metastasis of GIST. This paper describes a metastasis of a gastrointestinal stromal tumour (GIST) to the femur in a 62-year-old male, 2 years after treatment for a gastric primary. There were no signs of tumor recurrence at followup after 12 mo. This case suggests that the femur can be a potential metastatic site of GIST

    A high-energy liquid-jet hammer with specially designed backward stroke end buffer structure

    Get PDF
    A high-energy liquid-jet hammer with specially designed backward stroke end buffer structure was investigated computationally. Computational Fluid Dynamics (CFD) with the technique of dynamic and sliding meshes method was employed in this study. Results indicated that each of the geometric parameter of the buffer structure had a significant effect on the backward impacting energy of the impact body and brought a maximum of 49.8 % of backward impacting energy reduction. Experimental tests based on the non-contact measuring method were conducted to verify the simulation results, by which the accuracy and reliability of this CFD simulation method was proved. In addition, the high-energy liquid-jet hammer worked well with the optimal parameters of the buffer structure in bench testing and reached high penetration rate in a drilled borehole

    Learning Enhanced Resolution-wise features for Human Pose Estimation

    Full text link
    Recently, multi-resolution networks (such as Hourglass, CPN, HRNet, etc.) have achieved significant performance on pose estimation by combining feature maps of various resolutions. In this paper, we propose a Resolution-wise Attention Module (RAM) and Gradual Pyramid Refinement (GPR), to learn enhanced resolution-wise feature maps for precise pose estimation. Specifically, RAM learns a group of weights to represent the different importance of feature maps across resolutions, and the GPR gradually merges every two feature maps from low to high resolutions to regress final human keypoint heatmaps. With the enhanced resolution-wise features learnt by CNN, we obtain more accurate human keypoint locations. The efficacies of our proposed methods are demonstrated on MS-COCO dataset, achieving state-of-the-art performance with average precision of 77.7 on COCO val2017 set and 77.0 on test-dev2017 set without using extra human keypoint training dataset.Comment: Published on ICIP 202

    Optical Monitoring of BL Lacertae Object OJ 287: a 40-Day Period?

    Get PDF
    We present the results of our optical monitoring of the BL Lacertae object OJ 287 during the first half of 2005. The source did not show large-amplitude variations during this period and was in a relatively quiescent state. A possible period of 40 days was derived from its light curves in three BATC wavebands. A bluer-when-brighter chromatism was discovered, which is different from the extremely stable color during the outburst in 1994--96. The different color behaviors imply different variation mechanisms in the two states. We then re-visited the optical data on OJ 287 from the OJ-94 project and found as well a probable period of 40 days in its optical variability during the late-1994 outburst. The results suggest that two components contribute to the variability of OJ 287 during its outburst state. The first component is the normal {\sl blazar} variation. This component has an amplitude similar to that of the quiescent state and also may share a similar periodicity. The second component can be taken as a `low-frequency modulation' to the first component. It may be induced by the interaction of the assumed binary black holes in the center of this object. The 40-day period may be related to the helical structure of the magnetic field at the base of the jet, or to the orbital motion close to the central primary black hole.Comment: 31 pages, 8 figures, accepted by A
    corecore