1,409 research outputs found

    Strength and failure characteristics of marble spheres subjected to paired point loads

    Get PDF
    Failure of irregular rock samples may provide implications in the rapid estimation of rock strength, which is imperative in rock engineering practice. In this work, analytical, experimental and numerical investigations were carried out to study the mechanical properties and failure characteristics of rock spheres under paired point loads. Analytical solutions indicted that with the increase in sample size (contact angle) and decrease in Poisson's ratio, the uneven tensile stress in theta direction decreased. Then laboratory experiments were carried out to investigate the load characteristics and failure mode of spherical marble samples with different sizes subjected to a pair of diametral point loads. The discrete element method (DEM) was adopted to study the failure process of rock spheres. The effect of the sphere diameter on the point load contact angle was examined in terms of peak load, crushed zone distribution and energy dissipation. Experimental and numerical results showed that the samples primarily fail in tension, with crushed zones formed at both loading points. With increase in the sample size, the contact angle, crushed area and total work increase. As the specimen diameter increases from 30 mm to 50 mm, the peak load on the specimen increases from 3.6 kN to 8.8 kN, and the percentage of crushed zone (ratio of crushing zone to sample radius, d/r) increased from 0.191 to 0.262. The results of the study have implications for understanding the failure of irregular rock specimens under point loading conditions and their size effects

    Efficient Generalization Improvement Guided by Random Weight Perturbation

    Full text link
    To fully uncover the great potential of deep neural networks (DNNs), various learning algorithms have been developed to improve the model's generalization ability. Recently, sharpness-aware minimization (SAM) establishes a generic scheme for generalization improvements by minimizing the sharpness measure within a small neighborhood and achieves state-of-the-art performance. However, SAM requires two consecutive gradient evaluations for solving the min-max problem and inevitably doubles the training time. In this paper, we resort to filter-wise random weight perturbations (RWP) to decouple the nested gradients in SAM. Different from the small adversarial perturbations in SAM, RWP is softer and allows a much larger magnitude of perturbations. Specifically, we jointly optimize the loss function with random perturbations and the original loss function: the former guides the network towards a wider flat region while the latter helps recover the necessary local information. These two loss terms are complementary to each other and mutually independent. Hence, the corresponding gradients can be efficiently computed in parallel, enabling nearly the same training speed as regular training. As a result, we achieve very competitive performance on CIFAR and remarkably better performance on ImageNet (e.g. +1.1%\mathbf{ +1.1\%}) compared with SAM, but always require half of the training time. The code is released at https://github.com/nblt/RWP

    Internet visual media processing: A survey with graphics and vision applications

    Get PDF
    In recent years, the computer graphics and computer vision communities have devoted significant attention to research based on Internet visual media resources. The huge number of images and videos continually being uploaded by millions of people have stimulated a variety of visual media creation and editing applications, while also posing serious challenges of retrieval, organization, and utilization. This article surveys recent research as regards processing of large collections of images and video, including work on analysis, manipulation, and synthesis. It discusses the problems involved, and suggests possible future directions in this emerging research area

    Optical and Gamma-Ray Variability Behaviors of 3C 454.3 from 2006 to 2011

    Full text link
    We present our photometric monitoring of a flat spectrum radio quasar (FSRQ) 3C 454.3 at Yunnan observatories from 2006 to 2011. We find that the optical color of 3C 454.3 shows obvious redder-when-brighter trend, which reaches a saturation stage when the source is brighter than 15.15 mag at V band. We perform a simulation with multiple values of disk luminosity and spectral index to reproduce the magnitude-color diagram. The results show that the contamination caused by the disk radiation alone is difficult to produce the observed color variability. The variability properties during the outburst in December 2009 are also compared with γ\gamma-ray data derived from Fermi γ\gamma-ray space telescope. The flux variation of these two bands follow a linear relation with FγFR1.14±0.07F_{\gamma} \propto F_R^{1.14\pm0.07}, which provides an observational evidence for external Compton process in 3C 454.3. Meanwhile, this flux correlation indicates that electron injection is the main mechanism for variability origin. We also explore the variation of the flux ratio Fγ/FRF_{\gamma}/F_R and the detailed structures in the lightcurves, and discuss some possible origins for the detailed variability behaviors.Comment: accepted for publication in The Astrophysical Journal, 5 figures, 2 table

    Correlation of caveolin-1 expression with microlymphatic vessel density in colorectal adenocarcinoma tissues and its correlation with prognosis

    Get PDF
    AbstractObjectiveTo study the expression of caveolin-1 in colorectal adenocarcinoma tissues and its correlation with microlymphatic vessel density (LMVD), and to investigate the clinical pathological prognostic significance of caveolin-1 and LMVD in patients with colorectal cancer.MethodsThe expression of caveolin-1 and LMVD in 45 specimens of normal colorectal tissues, and 90 specimens of colorectal adenocarcinoma tissues were detected by immunohistochemistry technique. The correlation between their expression and the clinicopathologic features was analyzed. Multivariable Cox regression was used to analyze the association between the laboratory indices and overall survival time.ResultsThe positive rates of caveolin-1 in colorectal adenocarcinoma tissues were significantly higher than those in normal colorectal tissues (P < 0.01). LMVD in colorectal adenocarcinoma tissues were significantly higher than those in normal colorectal tissues (P < 0.01). Mean LMVD in group with caveolin-1 positive was significantly higher than in that with caveolin-1 negative. The median survival time was 26.7 months. Cox regression analysis showed that the caveolin-1 expression, invation depth, lymph node metastasis, TNM stage, liver metastasis and LMVD were independent risk factors of overall survival time of patients with colorectal carcinoma.ConclusionsCaveolin-1 may contribute to the lymphangiogenesis in the tumor. During the occurrence and development of colorectal adenocarcinoma, there is a close relationship between the expression of caveolin-1 and lymphatic microvessel of tumor. Caveolin-1 expression and microlymphatic vessel density are significant prognostic value of colorectal carcinoma

    Necrostatin-1 Attenuates Trauma-Induced Mouse Osteoarthritis and IL-1β Induced Apoptosis via HMGB1/TLR4/SDF-1 in Primary Mouse Chondrocytes

    Get PDF
    Necrostatin-1 (Nec-1) is a specific small molecule inhibitor of receptor-interacting protein kinase 1 (RIPK1) that specifically inhibits phosphorylation of RIPK1. RIPK1 regulates inflammation and cell death by interacting with receptor-interacting serine/threonine protein kinases 3(RIPK3). We hypothesized that Nec-1 may have anti-inflammatory efficacy in patients with osteoarthritis (OA), as the pathophysiology of OA involves the activation of inflammation-related signaling pathways and apoptosis. In this study, we explored the effects of Nec-1 on interleukin (IL)-1β-induced inflammation in mouse chondrocytes and the destabilised medial meniscus (DMM) mouse model. Inhibiting RIPK1 with Nec-1 dramatically suppressed catabolism both in vivo and in vitro, but did not inhibit changes in subchondral bone. Nec-1 abolished the in vitro increases in matrix metalloproteinase (MMP) and ADAM metallopeptidase with thrombospondin type 1 motif 5 (ADAMTs5) expression induced by IL-1β. However, adding high-mobility group box 1 (HMGB1) partially abrogated this effect, indicating the essential role of HMGB1 and Nec-1 in the protection of primary chondrocytes. Furthermore, Nec-1 decreased the expression of Toll-like receptor 4 (TLR4) and stromal cell-derived factor-1 (SDF-1), and attenuated the interaction between TLR4 and HMGB1. Western blot results suggested that Nec-1 significantly suppressed IL-1β-induced NF-κB transcriptional activity, but not MAPK pathway. Micro-computed tomography, immunohistochemical staining, and Safranin O/Fast Green staining were used in vivo to assess the degree of destruction of OA cartilage. The results show that NEC-1 can significantly reduce the degree of destruction of OA cartilage. Therefore, Nec-1 may be a novel therapeutic candidate to treat OA
    corecore