638 research outputs found

    C1q/TNF-related protein 3 (CTRP3) and 9 (CTRP9) concentrations are decreased in patients with heart failure and are associated with increased morbidity and mortality.

    Get PDF
    BACKGROUND: Biochemical marker has revolutionized the approach to the diagnosis of heart failure. However, it remains difficult to assess stability of the patient. As such, novel means of stratifying disease severity are needed. C1q/TNF-Related Protein 3 (CTRP3) and C1q/TNF-Related Protein 9 (CTRP9) are novel adipokines that contribute to energy homeostasis with additional anti-inflammatory and anti-ischemic properties. The aim of our study is to evaluate concentrations of CTRP3 and CTRP9 in patients with HFrEF (heart failure with reduced ejection fraction) and whether associated with mortality. METHODS: Clinical data and plasma were obtained from 176 healthy controls and 168 patients with HFrEF. CTRP3 and CTRP9 levels were evaluated by enzyme-linked immunosorbent assay. RESULTS: Both CTRP3 and CTRP9 concentrations were significantly decreased in the HFrEF group compared to the control group (p \u3c 0.001). Moreover, patients with higher New York Heart Association class had significantly lower CTRP3 or CTRP9 concentrations. Correlation analysis revealed that CTRP3 and CTRP9 levels were positively related with LVEF% (CTRP3, r = 0.556, p \u3c 0.001; CTRP9, r = 0.526, p \u3c 0.001) and negatively related with NT-proBNP levels (CTRP3, r = - 0.454, p \u3c 0.001; CTRP9, r = - 0.483, p \u3c 0.001). After a follow up for 36 months, after adjusted for age, LVEF and NT-proBNP, we observed that CTRP3 or CTRP9 levels below the 25th percentile was a predictor of total mortality (CTRP3,HR:1.93,95%CI1.03~3.62,P = 0.042;CTRP9,HR:1.98,95%CI:1.02~3.85,P = 0.044) and hospitalizations (CTRP3,HR:2.34,95% CI:1.43~3.82,P = 0.001;CTRP9,HR:2.67,95%CI:1.58~4.50,P \u3c 0.001). CONCLUSIONS: CTRP3 and CTRP9 are decreased in patients with HFrEF, proportionate to disease severity, and each is associated with increased morbidity and mortality. TRIAL REGISTRATION: NCT01372800 . Registered May 2011

    Effect of ammonia on the immune response of mud crab (Scylla paramamosain) and its susceptibility to mud crab reovirus

    Get PDF
    Ammonia is one of the major environmental pollutants that affect the growth and physiological functions of organisms. In the present study, the effects of ammonia on the immune response and pathogen resistance of mud crab reovirus (MCRV) in mud crab were investigated. Mud crab were exposed to four different ammonia concentrations (0, 2.5, 5 and 10 mg L-1 ammonia-N) for 7 d. The result showed that aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity significantly increased after 5 and 10 mg L-1 ammonia exposure. The hepatopancreas superoxide dismutase (SOD), catalase (CAT), and total antioxidative capacity (T-AOC) in ammonia-N group were significantly lower than those in the control group, while the levels of malondialdehyde (MDA) were significantly higher than those in the control group. Significant reductions in total hemocyte counts (THC) were observed after ammonia exposure. After 7d ammonia exposure, mud crabs were injected 100 μL MCRV at 105 copies/g body weight. The mortality of mud crabs in ammonia-N group were significantly higher than those in the control group. All these results suggested that ammonia in water caused a depression in the immune response, and increased susceptibility to MCRV infection

    3-(n-Propyl­imino­meth­yl)-1,1′-bi-2-naphthol ethanol solvate

    Get PDF
    In the title compound, C24H21NO2·C2H6O, the dihedral angle between the two aromatic ring systems is 87.00 (6)°. There is an intra­molecular O—H⋯N hydrogen bond, which forms a six-membered ring. Inter­molecular O—H⋯O hydrogen bonds stabilize the crystal structure

    Anomalous superconducting proximity effect of planar Pb-RhPb2 heterojunctions in the clean limit

    Full text link
    Interest in superconducting proximity effect has been revived by the exploitation of Andreev states and by the possible emergence of Majorana bound states at the interface. Spectroscopy of these states has been so far restricted to just a handful of superconductor-metal systems in the diffusion regime, whereas reports in otherwise clean superconductor-superconductor heterojunctions are scarce. Here, we realize molecular beam epitaxy growth of atomically sharp planar heterojunctions between Pb and a topological superconductor candidate RhPb2 that allows us to spectroscopically image the proximity effect in the clean limit. The measured energy spectra of RhPb2 vary with the spatial separation from proximal Pb, and exhibit unusual modifications in the pairing gap structure and size that extend over a distance far beyond the coherence length. This anomalously long-range proximity (LRP) effect breaks the rotational symmetry of Cooper pair potential in real space and largely deforms the Abrikosov vortex cores. Our work opens promising avenues for fundamental studies of the Andreev physics and extraordinary states in clean superconducting heterojunctions.Comment: 8 pages, 4 figure

    Effects of salt stress on interspecific competition between an invasive alien plant Oenothera biennis and three native species

    Get PDF
    Biological invasions and soil salinization have become increasingly severe environmental problems under global change due to sea-level rise and poor soil management. Invasive species can often outcompete native species, but few studies focus on whether invasive alien species are always superior competitors under increasing stressors. We grew an invasive grass species, Oenothera biennis L., and three native grass species (Artemisia argyi Lévl. et Vant., Chenopodium album L., and Inula japonica Thunb.) as a monoculture (two seedlings of each species) or mixture (one seedling of O. biennis and one native species seedling) under three levels of salt treatments (0, 1, and 2 g/kg NaCl) in a greenhouse. We found that invasive O. biennis exhibited greater performance over native C. album and I. japonica, but lower performance compared to A. argyi, regardless of the soil salinity. However, salinity did not significantly affect the relative dominance of O. biennis. Interspecific competition enhanced the growth of O. biennis and inhibited the growth of I. japonica. Although O. biennis seedlings always had growth dominance over C. album seedlings, C. album was not affected by O. biennis at any salt level. At high salt levels, O. biennis inhibited the growth of A. argyi, while A. argyi did not affect the growth of O. biennis. Salt alleviated the competitive effect of O. biennis on I. japonica but did not mitigate the competition between O. biennis and the other two native species. Therefore, our study provides evidence for a better understanding of the invasive mechanisms of alien species under various salinity conditions

    Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells.

    Get PDF
    The advanced glycation end products (AGEs) are associated with increased cardiac endothelial injury. However, no causative link has been established between increased AGEs and enhanced endothelial injury after ischemia/reperfusion. More importantly, the molecular mechanisms by which AGEs may increase endothelial injury remain unknown. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and incubated with AGE-modified bovine serum albumin (BSA) or BSA. After AGE-BSA or BSA preculture, CMECs were subjected to simulated ischemia (SI)/reperfusion (R). AGE-BSA increased SI/R injury as evidenced by enhanced lactate dehydrogenase release and caspase-3 activity. Moreover, AGE-BSA significantly increased SI/R-induced oxidative/nitrative stress in CMECs (as measured by increased inducible nitric oxide synthase expression, total nitric oxide production, superoxide generation, and peroxynitrite formation) and increased SI/R-induced nitrative inactivation of thioredoxin-1 (Trx-1), an essential cytoprotective molecule. Supplementation of EUK134 (peroxynitrite decomposition catalyst), human Trx-1, or soluble receptor of advanced end product (sRAGE) (a RAGE decoy) in AGE-BSA precultured cells attenuated SI/R-induced oxidative/nitrative stress, reduced SI/R-induced Trx-1 nitration, preserved Trx-1 activity, and reduced SI/R injury. Our results demonstrated that AGEs may increase SI/R-induced endothelial injury by increasing oxidative/nitrative injury and subsequent nitrative inactivation of Trx-1. Interventions blocking RAGE signaling or restoring Trx activity may be novel therapies to mitigate endothelial ischemia/reperfusion injury in the diabetic population
    corecore