11 research outputs found
A prominent lack of IgG1-Fc fucosylation of platelet alloantibodies in pregnancy.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.
This article is open access.Immunoglobulin G (IgG) formed during pregnancy against human platelet antigens (HPAs) of the fetus mediates fetal or neonatal alloimmune thrombocytopenia (FNAIT). Because antibody titer or isotype does not strictly correlate with disease severity, we investigated by mass spectrometry variations in the glycosylation at Asn297 in the IgG Fc because the composition of this glycan can be highly variable, affecting binding to phagocyte IgG-Fc receptors (FcγR). We found markedly decreased levels of core fucosylation of anti-HPA-1a-specific IgG1 from FNAIT patients (n = 48), but not in total serum IgG1. Antibodies with a low amount of fucose displayed higher binding affinity to FcγRIIIa and FcγRIIIb, but not to FcγRIIa, compared with antibodies with a high amount of Fc fucose. Consequently, these antibodies with a low amount of Fc fucose showed enhanced phagocytosis of platelets using FcγRIIIb(+) polymorphonuclear cells or FcγRIIIa(+) monocytes as effector cells, but not with FcγRIIIa(-) monocytes. In addition, the degree of anti-HPA-1a fucosylation correlated positively with the neonatal platelet counts in FNAIT, and negatively to the clinical disease severity. In contrast to the FNAIT patients, no changes in core fucosylation were observed for anti-HLA antibodies in refractory thrombocytopenia (post platelet transfusion), indicating that the level of fucosylation may be antigen dependent and/or related to the immune milieu defined by pregnancy.Sanquin/PPOC-09- 025
Landsteiner Foundation for Blood Transfusion/0721
info:eu-repo/grantAgreement/EC/FP7/27853
Anti-D monoclonal antibodies from 23 human and rodent cell lines display diverse IgG Fc-glycosylation profiles that determine their clinical efficacy.
Anti-D immunoglobulin (Anti-D Ig) prophylaxis prevents haemolytic disease of the fetus and newborn. Monoclonal IgG anti-Ds (mAb-Ds) would enable unlimited supplies but have differed in efficacy in FcγRIIIa-mediated ADCC assays and clinical trials. Structural variations of the oligosaccharide chains of mAb-Ds are hypothesised to be responsible. Quantitative data on 12 Fc-glycosylation features of 23 mAb-Ds (12 clones, 5 produced from multiple cell lines) and one blood donor-derived anti-D Ig were obtained by HPLC and mass spectrometry using 3 methods. Glycosylation of mAb-Ds from human B-lymphoblastoid cell lines (B) was similar to anti-D Ig although fucosylation varied, affecting ADCC activity. In vivo, two B mAb-Ds with 77-81% fucosylation cleared red cells and prevented D-immunisation but less effectively than anti-D Ig. High fucosylation (>89%) of mouse-human heterohybridoma (HH) and Chinese hamster ovary (CHO) mAb-Ds blocked ADCC and clearance. Rat YB2/0 mAb-Ds with 60%) together with lower fucosylation (<60%) as safe features of mAb-Ds for mediating rapid red cell clearance at low doses, to enable effective, inexpensive prophylaxis
Recommended from our members
Anti-D monoclonal antibodies from 23 human and rodent cell lines display diverse IgG Fc-glycosylation profiles that determine their clinical efficacy.
Anti-D immunoglobulin (Anti-D Ig) prophylaxis prevents haemolytic disease of the fetus and newborn. Monoclonal IgG anti-Ds (mAb-Ds) would enable unlimited supplies but have differed in efficacy in FcγRIIIa-mediated ADCC assays and clinical trials. Structural variations of the oligosaccharide chains of mAb-Ds are hypothesised to be responsible. Quantitative data on 12 Fc-glycosylation features of 23 mAb-Ds (12 clones, 5 produced from multiple cell lines) and one blood donor-derived anti-D Ig were obtained by HPLC and mass spectrometry using 3 methods. Glycosylation of mAb-Ds from human B-lymphoblastoid cell lines (B) was similar to anti-D Ig although fucosylation varied, affecting ADCC activity. In vivo, two B mAb-Ds with 77-81% fucosylation cleared red cells and prevented D-immunisation but less effectively than anti-D Ig. High fucosylation (>89%) of mouse-human heterohybridoma (HH) and Chinese hamster ovary (CHO) mAb-Ds blocked ADCC and clearance. Rat YB2/0 mAb-Ds with 60%) together with lower fucosylation (<60%) as safe features of mAb-Ds for mediating rapid red cell clearance at low doses, to enable effective, inexpensive prophylaxis
Anti-D monoclonal antibodies from 23 human and rodent cell lines display diverse IgG Fc-glycosylation profiles that determine their clinical efficacy
Anti-D immunoglobulin (Anti-D Ig) prophylaxis prevents haemolytic disease of the fetus and newborn. Monoclonal IgG anti-Ds (mAb-Ds) would enable unlimited supplies but have differed in efficacy in FcγRIIIa-mediated ADCC assays and clinical trials. Structural variations of the oligosaccharide chains of mAb-Ds are hypothesised to be responsible. Quantitative data on 12 Fc-glycosylation features of 23 mAb-Ds (12 clones, 5 produced from multiple cell lines) and one blood donor-derived anti-D Ig were obtained by HPLC and mass spectrometry using 3 methods. Glycosylation of mAb-Ds from human B-lymphoblastoid cell lines (B) was similar to anti-D Ig although fucosylation varied, affecting ADCC activity. In vivo, two B mAb-Ds with 77–81% fucosylation cleared red cells and prevented D-immunisation but less effectively than anti-D Ig. High fucosylation (>89%) of mouse-human heterohybridoma (HH) and Chinese hamster ovary (CHO) mAb-Ds blocked ADCC and clearance. Rat YB2/0 mAb-Ds with 60%) together with lower fucosylation (<60%) as safe features of mAb-Ds for mediating rapid red cell clearance at low doses, to enable effective, inexpensive prophylaxis