10 research outputs found
Metabolic syndrome is associated with similar long-term prognosis in non-obese and obese patients. An analysis of 45 615 patients from the nationwide LIPIDOGRAM 2004-2015 cohort studies
Aims We aimed to evaluate the association between metabolic syndrome (MetS) and long-term all-cause mortality. Methods The LIPIDOGRAM studies were carried out in the primary care in Poland in 2004, 2006 and 2015. MetS was diagnosed based on the National Cholesterol Education Program, Adult Treatment Panel III (NCEP/ATP III) and Joint Interim Statement (JIS) criteria. The cohort was divided into four groups: non-obese patients without MetS, obese patients without MetS, non-obese patients with MetS and obese patients with MetS. Differences in all-cause mortality was analyzed using Kaplan-Meier and Cox regression analyses. Results 45,615 participants were enrolled (mean age 56.3, standard deviation: 11.8 years; 61.7% female). MetS was diagnosed in 14,202 (31%) by NCEP/ATP III criteria, and 17,216 (37.7%) by JIS criteria. Follow-up was available for 44,620 (97.8%, median duration 15.3 years) patients. MetS was associated with increased mortality risk among the obese (hazard ratio, HR: 1.88 [95% CI, 1.79-1.99] and HR: 1.93 [95% CI 1.82-2.04], according to NCEP/ATP III and JIS criteria, respectively) and non-obese individuals (HR: 2.11 [95% CI 1.85-2.40] and 1.7 [95% CI, 1.56-1.85] according to NCEP/ATP III and JIS criteria respectively). Obese patients without MetS had a higher mortality risk than non-obese patients without MetS (HR: 1.16 [95% CI 1.10-1.23] and HR: 1.22 [95%CI 1.15-1.30], respectively in subgroups with NCEP/ATP III and JIS criteria applied). Conclusions MetS is associated with increased all-cause mortality risk in non-obese and obese patients. In patients without MetS obesity remains significantly associated with mortality. The concept of metabolically healthy obesity should be revised
Muscle injuries in sports: a new evidence-informed and expert consensus-based classification with clinical application
Muscle injuries are among the most common injuries in sport and continue to be a major concern because of training and competition time loss, challenging decision making regarding treatment and return to sport, and a relatively high recurrence rate. An adequate classification of muscle injury is essential for a full understanding of the injury and to optimize its management and return-to-play process. The ongoing failure to establish a classification system with broad acceptance has resulted from factors such as limited clinical applicability, and the inclusion of subjective findings and ambiguous terminology. The purpose of this article was to describe a classification system for muscle injuries with easy clinical application, adequate grouping of injuries with similar functional impairment, and potential prognostic value. This evidence-informed and expert consensus-based classification system for muscle injuries is based on a four-letter initialism system: MLG-R, respectively referring to the mechanism of injury (M), location of injury (L), grading of severity (G), and number of muscle re-injuries (R). The goal of the classification is to enhance communication between healthcare and sports-related professionals and facilitate rehabilitation and return-to-play decision making