46 research outputs found
Nanolevel Surface Processing of Fine Particles by Waterjet Cavitation and Multifunction Cavitation to Improve the Photocatalytic Properties of Titanium Oxide
Titanium oxide particles were treated by water jet cavitation (WJC) generated and multifunction cavitation (MFC) using an ejector nozzle. Generation, growth, and collapse of cavitation are repeated with the particles of titanium oxide and platinum. Because the cavitation has an extremely high collapse pressure, the surface of the titanium oxide particles is processed by the microjets of cavitation in a reactor comprising the ejector nozzle. In the multifunction cavitation, ultrasonic irradiation of a waterjet during floating cavitation was used to generate microjets with hot spots. Hot working can be performed at the nanoscale on a material surface using this MFC process, resulting in morphological changes and variations in the surface electrochemical characteristics. The fundamental characteristics of multifunction cavitation were investigated theoretically and experimentally. Furthermore, the additional nozzle was put on the ejector nozzle in order to increase the temperature and pressure of bubble and the mechanism was clarified. The quantities of hydrogen and oxygen generated from titanium dioxide particles treated by multifunction cavitation in response to UV and visible light irradiation were remarkably increased compared to the amounts produced by particles treated by WJC processing. In this chapter, the methods and their results of processing particles by cavitation are introduced
Reliability and Validity of the Nursing Student Competency Assessment Instrument and Related Factors
The purpose of this study was to confirm the reliability and validity of the competency assessment index of nursing students and to identify the factors associated with competency. An anonymous self-administered questionnaire survey was conducted on nursing students enrolled from April 2021 to March 2022. Principal component analysis and Cronbach’s alpha coefficient were used to examine the reliability and validity of the competency factor structure. Multiple regression analysis was used to analyze related factors. As a result, the reliability and validity of the factor structure of competency were statistically clarified. As related factors of competency, “grade level” and “thinking that learning in university education gives students confidence” and “cognitive regulation strategies” were identified. In the analysis by competency sub-factors, other than grade level,[ relationship building] was affected by “being immersed in university education,” [ethical care] and [cooperation and collaboration] by “thinking that learning in university education gives students confidence”, and[ health problem-solving] and[ professional development] by “cognitive regulation strategies”. The importance of recommending experiential education in clinical practice, strengthening self-regulated learning strategies, and education to increase students’ self-confidence were suggested. The results of this study contribute to the reconstruction of education in which competencies are shared with students
雪氷新過程導入によるGCM地表気温バイアスの改善
第6回極域科学シンポジウム分野横断セッション:[IA] 急変する北極気候システム及びその全球的な影響の総合的解明―GRENE北極気候変動研究事業研究成果報告2015―11月19日(木) 国立極地研究所 2階 大会議
siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect
<p>Abstract</p> <p>Background</p> <p>RNA interference (RNAi), mediated by 21-nucleotide (nt)-length small interfering RNAs (siRNAs), is a powerful tool not only for studying gene function but also for therapeutic applications. RNAi, requiring perfect complementarity between the siRNA guide strand and the target mRNA, was believed to be extremely specific. However, a recent growing body of evidence has suggested that siRNA could down-regulate unintended genes whose transcripts possess complementarity to the 7-nt siRNA seed region. This off-target gene silencing may often provide incongruous results obtained from knockdown experiments, leading to misinterpretation. Thus, an efficient algorithm for designing functional siRNAs with minimal off-target effect based on the mechanistic features is considered of value.</p> <p>Results</p> <p>We present siDirect 2.0, an update of our web-based software siDirect, which provides functional and off-target minimized siRNA design for mammalian RNAi. The previous version of our software designed functional siRNAs by considering the relationship between siRNA sequence and RNAi activity, and provided them along with the enumeration of potential off-target gene candidates by using a fast and sensitive homology search algorithm. In the new version, the siRNA design algorithm is extensively updated to eliminate off-target effects by reflecting our recent finding that the capability of siRNA to induce off-target effect is highly correlated to the thermodynamic stability, or the melting temperature (Tm), of the seed-target duplex, which is formed between the nucleotides positioned at 2-8 from the 5' end of the siRNA guide strand and its target mRNA. Selection of siRNAs with lower seed-target duplex stabilities (benchmark Tm < 21.5°C) followed by the elimination of unrelated transcripts with nearly perfect match should minimize the off-target effects.</p> <p>Conclusion</p> <p>siDirect 2.0 provides functional, target-specific siRNA design with the updated algorithm which significantly reduces off-target silencing. When the candidate functional siRNAs could form seed-target duplexes with Tm values below 21.5°C, and their 19-nt regions spanning positions 2-20 of both strands have at least two mismatches to any other non-targeted transcripts, siDirect 2.0 can design at least one qualified siRNA for >94% of human mRNA sequences in RefSeq. siDirect 2.0 is available at <url>http://siDirect2.RNAi.jp/</url>.</p
Virological characteristics of the SARS-CoV-2 Omicron BA.2.75 variant
SARS-CoV-2オミクロンBA.2.75株(通称ケンタウロス)のウイルス学的性状の解明. 京都大学プレスリリース. 2022-10-12.The SARS-CoV-2 Omicron BA.2.75 variant emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically distinct from BA.5, the currently predominant BA.2 descendant. Here, we show that BA.2.75 has a greater effective reproduction number and different immunogenicity profile than BA.5. We determined the sensitivity of BA.2.75 to vaccinee and convalescent sera as well as a panel of clinically available antiviral drugs and antibodies. Antiviral drugs largely retained potency but antibody sensitivity varied depending on several key BA.2.75-specific substitutions. The BA.2.75 spike exhibited a profoundly higher affinity for its human receptor, ACE2. Additionally, the fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were greater than those of BA.2. Our multilevel investigations suggest that BA.2.75 acquired virological properties independent of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5
Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843
The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5 842 795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome
Convergent evolution of SARS-CoV-2 Omicron subvariants leading to the emergence of BQ.1.1 variant
In late 2022, various Omicron subvariants emerged and cocirculated worldwide. These variants convergently acquired amino acid substitutions at critical residues in the spike protein, including residues R346, K444, L452, N460, and F486. Here, we characterize the convergent evolution of Omicron subvariants and the properties of one recent lineage of concern, BQ.1.1. Our phylogenetic analysis suggests that these five substitutions are recurrently acquired, particularly in younger Omicron lineages. Epidemic dynamics modelling suggests that the five substitutions increase viral fitness, and a large proportion of the fitness variation within Omicron lineages can be explained by these substitutions. Compared to BA.5, BQ.1.1 evades breakthrough BA.2 and BA.5 infection sera more efficiently, as demonstrated by neutralization assays. The pathogenicity of BQ.1.1 in hamsters is lower than that of BA.5. Our multiscale investigations illuminate the evolutionary rules governing the convergent evolution for known Omicron lineages as of 2022
Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants
In late 2022, SARS-CoV-2 Omicron subvariants have become highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged through the recombination of two cocirculating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022. XBB.1 is the variant most profoundly resistant to BA.2/5 breakthrough infection sera to date and is more fusogenic than BA.2.75. The recombination breakpoint is located in the receptor-binding domain of spike, and each region of the recombinant spike confers immune evasion and increases fusogenicity. We further provide the structural basis for the interaction between XBB.1 spike and human ACE2. Finally, the intrinsic pathogenicity of XBB.1 in male hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provides evidence suggesting that XBB is the first observed SARS-CoV-2 variant to increase its fitness through recombination rather than substitutions
Stress Relaxation Behavior of Cavitation-Processed Cr–Mo Steel and Ni–Cr–Mo Steel
Cr–Mo steel and Ni–Cr–Mo steel have higher strength and hardness than carbon steel, and they are occasionally used in harsh environments where high temperatures and high pressures are simultaneously applied in an oxidizing gas atmosphere. In general, in order to improve the fatigue strength of a material, it is important to impart compressive residual stress to the material surface to improve crack resistance and corrosion resistance. Conventionally, the most famous technique for imparting compressive residual stress by surface modification of a material is shot peening processing. However, in shot peening processing, there is concern that particles adhere to the surface of the material or the surface of the material becomes rough. Therefore, in this study high temperature and high-pressure cavitation was applied and the material surface was processed at the time of collapse. A theoretical and experimental study on a new processing method giving compressive residual stress was carried out. In the present study, we will report stress relaxation behavior due to the heat of cavitation in processed Cr–Mo steel and Ni–Cr–Mo steel