2 research outputs found

    The Impact of a Multidisciplinary Service-Learning Project on Engineering Knowledge and Professional Skills in Engineering in Engineering and Education Students

    Get PDF
    A multidisciplinary service-learning project that involved teaching engineering to fourth and fifth graders was implemented in three sets of engineering and education classes to determine if there was an impact on engineering knowledge and teamwork skills in both the engineering and education students as well as persistence in the engineering students. Collaboration 1 paired a 100-level engineering Information Literacy class in Mechanical and Aerospace Engineering with a 300-level Educational Foundation class. Collaboration 2 combined a 300-level Electromechanical Systems class in Mechanical Engineering with a 400-level Educational Technology class. Collaboration 3 paired a 300-level Fluid Mechanics class in Mechanical Engineering Technology with a 400-level Elementary Science Methods class. Collaborations 1 and 3 interacted with fourth or fifth graders by developing and delivering lessons to the elementary students. Students in collaboration 2 worked with fifth graders in an after-school technology club. While each collaboration had its unique elements, all collaborations included the engineering design process both in classroom instruction and during the service learning project. Quantitative data were collected from both engineering and education students in a pretest/posttest design. Teamwork skills were measured in engineering students using a validated teamwork skills assessment based on peer evaluation. Each class had a comparison class taught by the same instructor that included a team project, and the same quantitative measures. Engineering students who participated in collaboration 1 were evaluated for retention, which was defined as students who were still enrolled in the college of engineering and technology two semesters after completion of the course. Engineering students also completed an evaluation of academic and professional persistence. For the engineering students, none of the assessments involving technical skills had significant differences, although the design process knowledge tests trended upward in the treatment classes. The preservice teachers in the treatment group scored significantly higher in the design process knowledge test, and preservice teachers in collaborations 1 and 3 had higher scores in the engineering knowledge test than the comparison group. Teamwork skills in the treatment group were significantly higher than in the comparison group for both engineering and education students. Thus, engineering and education students in the treatment groups saw gains in teamwork skills, while education students saw more gains in engineering knowledge. Finally, all engineering students had significantly higher professional persistence

    How Does Working on an Interdisciplinary Service-Learning Project vs. a Disciplinary Design Project Affect Peer Evaluators\u27 Teamwork Skills

    Get PDF
    Over the course of several semesters, two different project-based learning approaches were used in two undergraduate engineering courses–a 100-level introductory course that covered a general education requirement on information literacy and a 300-level fluid mechanics course. One project (treatment) was an interdisciplinary service-learning project, implemented with undergraduate engineering and education students who collaborated to develop and deliver engineering lessons to fourth and fifth-grade students in a field trip model. The other projects (comparison) involved a team-based design project contained within each class. In the 100-level course, students selected their project based on personal interests and followed the engineering design process to develop, test, and redesign a prototype. In the fluid mechanics class, students designed a pumped pipeline system for a hypothetical plant. This study aimed to determine whether participating in the interdisciplinary project affected students’ evaluation of their own and their teammates’ teamwork effectiveness skills, measured using the Behaviorally Anchored Rating Scale (BARS) version of the Comprehensive Assessment of Team Member Effectiveness(CATME). The five dimensions of CATME measured in this study are (1) contribution to the team’s work, (2) interacting with teammates, (3) keeping the team on track, (4) expecting quality, and (5) having relevant knowledge, skills, and abilities (KSAs). The quantitative data from CATME were analyzed using ANCOVA analysis. Furthermore, since data were collected over three semesters and coincided with the pre, during, and post-phases of the COVID-19 pandemic, it was possible to examine the effects of the evolving classroom constraints over the course of the pandemic on the teamwork effectiveness skills of both the treatment and comparison classes. Preliminary results suggest that students in the treatment classes perceived that their teammates had greater relevant knowledge, skills, and abilities than the comparison cohort. Engineering students in the treatment group also believed their team members were more capable of quality work than the engineering students in the comparison group. Moreover, preliminary results showed a significant drop in scores for expecting quality and having relevant KSA during the peak of COVID during online instruction and performance of both projects, followed by a rise in mean scores during the return to in-person classes. Reflections from available qualitative data were paired to help understand the quantitative data results further
    corecore