20 research outputs found

    Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation

    Get PDF
    Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored

    Late-onset renal vein thrombosis: A case report and review of the literature

    Get PDF
    AbstractINTRODUCTIONRenal vein thrombosis, a rare complication of renal transplantation, often causes graft loss. Diagnosis includes ultrasound with Doppler, and it is often treated with anticoagulation or mechanical thrombectomy. Success is improved with early diagnosis and institution of treatment.PRESENTATION OF CASEWe report here the case of a 29 year-old female with sudden development of very late-onset renal vein thrombosis after simultaneous kidney pancreas transplant. This resolved initially with thrombectomy, stenting and anticoagulation, but thrombosis recurred, necessitating operative intervention. Intraoperatively the renal vein was discovered to be compressed by a large ovarian cyst.DISCUSSIONCompression of the renal vein by a lymphocele or hematoma is a known cause of thrombosis, but this is the first documented case of compression and thrombosis due to an ovarian cyst.CONCLUSIONEarly detection and treatment of renal vein thrombosis is paramount to restoring renal allograft function. Any woman of childbearing age may have thrombosis due to compression by an ovarian cyst, and screening for this possibility may improve long-term graft function in this population

    Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics

    Get PDF
    ABSTRACT Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available

    Liver transplantation for T3 lesions has higher waiting list mortality but similar survival compared to T1 and T2 lesions

    No full text
    Background. Restrictive staging criteria for liver transplant (LT) patients with HCC in the U.S. have resulted in favorable long-term recurrence-free survival, but these criteria exclude a subgroup of patients who, despite tumor size beyond T2 stage, demonstrate an acceptable outcome. The aim of this study was to assess the waiting list and post-transplant mortality of patients with HCC tumors greater than Milan T2 stage.Methods. The U.S. OPTN standard transplant dataset was analyzed for patients with a diagnosis of HCC who were listed for liver transplantation between February 2002 and 2008. Those patients with Milan T3 stage tumors were compared to patients with T1 and T2 lesions. Multivariate survival models were developed to investigate independent predictors of death or tumor recurrence post-transplant.Results. 7,391 patients with HCC were identified. 351 (4.75%) had T3 lesions. Compared to non-T3 patients, total tumor burden was greater and total alpha-fetoprotein (AFP) was higher in the T3 patients. T3 patients also were more likely to receive pretransplant locoregional therapy. There were no significant differences between T3 patients and non-T3 patients in demographic variables or physiologic MELD score at the time of transplant, waiting time, or donor risk index. Waiting list mortality was increased for T3 patients compared to non-T3 and tumor progression while waiting was higher. Independent predictors of waiting list mortality included physiologic MELD score at the time of listing, total tumor burden, and serum AFP. There was significant regional variation in the utilization of exceptions for T3 patients and UNOS regions 4, 9, and 10 performed a higher percentage of their transplants in T3 patients compared to other regions. There was no difference in post transplant survival between T3 and non-T3 patients. Independent predictors of post-transplant mortality included physiologic MELD score at the time of transplant, recipient age, and donor risk index. In patients with T3 tumors, total tumor burden was not an independent predictor of post transplant survival.Conclusions. Patients who are listed for liver transplantation with Milan stage T3 HCC have higher waiting list mor-tality but have similar post-transplant survival compared to patients with T1 and T2 HCC

    Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity

    No full text
    Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 μM ATP or ATγP in the presence or absence of 5-10 mM APAP for 9-24 h. ATP or ATγP was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patient

    Metabolic Impact of MKP-2 Upregulation in Obesity Promotes Insulin Resistance and Fatty Liver Disease

    No full text
    The mechanisms connecting obesity with type 2 diabetes, insulin resistance, nonalcoholic fatty liver disease, and cardiovascular diseases remain incompletely understood. The function of MAPK phosphatase-2 (MKP-2), a type 1 dual-specific phosphatase (DUSP) in whole-body metabolism, and how this contributes to the development of diet-induced obesity, type 2 diabetes (T2D), and insulin resistance is largely unknown. We investigated the physiological contribution of MKP-2 in whole-body metabolism and whether MKP-2 is altered in obesity and human fatty liver disease using MKP-2 knockout mice models and human liver tissue derived from fatty liver disease patients. We demonstrate that, for the first time, MKP-2 expression was upregulated in liver tissue in humans with obesity and fatty liver disease and in insulin-responsive tissues in mice with obesity. MKP-2-deficient mice have enhanced p38 MAPK, JNK, and ERK activities in insulin-responsive tissues compared with wild-type mice. MKP-2 deficiency in mice protects against diet-induced obesity and hepatic steatosis and was accompanied by improved glucose homeostasis and insulin sensitivity. Mkp-2−/− mice are resistant to diet-induced obesity owing to reduced food intake and associated lower respiratory exchange ratio. This was associated with enhanced circulating insulin-like growth factor-1 (IGF-1) and stromal cell-derived factor 1 (SDF-1) levels in Mkp-2−/− mice. PTEN, a negative regulator of Akt, was downregulated in livers of Mkp-2−/− mice, resulting in enhanced Akt activity consistent with increased insulin sensitivity. These studies identify a novel role for MKP-2 in the regulation of systemic metabolism and pathophysiology of obesity-induced insulin resistance and fatty liver disease
    corecore