2 research outputs found

    Curcumin Nanoformulation for Cervical Cancer Treatment

    Get PDF
    Cervical cancer is one of the most common cancers among women worldwide. Current standards of care for cervical cancer includes surgery, radiation, and chemotherapy. Conventional chemotherapy fails to elicit therapeutic responses and causes severe systemic toxicity. Thus, developing a natural product based, safe treatment modality would be a highly viable option. Curcumin (CUR) is a well-known natural compound, which exhibits excellent anti-cancer potential by regulating many proliferative, oncogenic, and chemo-resistance associated genes/proteins. However, due to rapid degradation and poor bioavailability, its translational and clinical use has been limited. To improve these clinically relevant parameters, we report a poly(lactic-co-glycolic acid) based curcumin nanoparticle formulation (Nano-CUR). This study demonstrates that in comparison to free CUR, Nano-CUR effectively inhibits cell growth, induces apoptosis, and arrests the cell cycle in cervical cancer cell lines. Nano-CUR treatment modulated entities such as miRNAs, transcription factors, and proteins associated with carcinogenesis. Moreover, Nano-CUR effectively reduced the tumor burden in a pre-clinical orthotopic mouse model of cervical cancer by decreasing oncogenic miRNA-21, suppressing nuclear β-catenin, and abrogating expression of E6/E7 HPV oncoproteins including smoking compound benzo[a]pyrene (BaP) induced E6/E7 and IL-6 expression. These superior pre-clinical data suggest that Nano-CUR may be an effective therapeutic modality for cervical cancer

    Worldwide prevalence, genotype distribution and management of hepatitis C

    Get PDF
    epatitis C virus (HCV) is one of the leading causes of chronic liver disease, cirrhosis, and hepatocellular carcinoma, resulting in major global public health concerns. The HCV infection is unevenly distributed worldwide, with variations in prevalence across and within countries. The studies on molecular epidemiology conducted in several countries provide an essential supplement for a comprehensive knowledge of HCV epidemiology, genotypes, and subtypes, along with providing information on the impact of current and earlier migratory flows. HCV is phylogenetically classified into 8 major genotypes and 57 subtypes. HCV genotype and subtype distribution differ according to geographic origin and transmission risk category. Unless people with HCV infection are detected and treated appropriately, the number of deaths due to the disease will continue to increase. In 2015, 1.75 million new viral infections were mostly due to unsafe healthcare procedures and drug use injections. In the same year, access to direct-acting antivirals was challenging and varied in developing and developed countries, affecting HCV cure rates based on their availability. The World Health Assembly, in 2016, approved a global strategy to achieve the elimination of the HCV public health threat by 2030 (by reducing new infections by 90% and deaths by 65%). Globally, countries are implementing policies and measures to eliminate HCV risk based on their distribution of genotypes and prevalence
    corecore