13 research outputs found

    A Novel Lentiviral Vector-Based Approach To Generate Chimeric Antigen Receptor T Cells Targeting

    Get PDF
    Invasive aspergillosis (IA) is a common and deadly mold infection in immunocompromised patients. As morbidity and mortality of IA are primarily driven by poor immune defense, adjunct immunotherapies, such as chimeric antigen receptor (CAR) T cells, are direly needed. Here, we propose a novel approach to generate Aspergillus fumigatus (AF)-CAR T cells using the single-chain variable fragment domain of monoclonal antibody AF-269-5 and a lentiviral vector system. These cells successfully targeted mature hyphal filaments of representative clinical and reference AF isolates and elicited a potent release of cytotoxic effectors and type 1 T cell cytokines. Furthermore, AF-CAR T cells generated from peripheral blood mononuclear cells of four healthy human donors and expanded with either of three cytokine stimulation regimens (IL-2, IL-2 + IL-21, or IL-7 + IL-15) significantly suppressed mycelial growth of AF-293 after 18 hours of co-culture and synergized with the immunomodulatory antifungal agent caspofungin to control hyphal growth for 36 hours. Moreover, cyclophosphamide-immunosuppressed NSG mice with invasive pulmonary aspergillosis that received two doses of 5 million AF-CAR T cells (6 and 48 hours after AF infection) showed significantly reduced morbidity on day 4 post-infection (P \u3c 0.001) and significantly improved 7-day survival (P = 0.049) compared with mice receiving non-targeting control T cells, even without concomitant antifungal chemotherapy. In conclusion, we developed a novel lentiviral strategy to obtain AF-CAR T cells with high targeting efficacy, yielding significant anti-AF activity in vitro and short-term protection in vivo. Our approach could serve as an important steppingstone for future clinical translation of antifungal CAR T-cell therapy after further refinement and thorough preclinical evaluation.IMPORTANCEInvasive aspergillosis (IA) remains a formidable cause of morbidity and mortality in patients with hematologic malignancies and those undergoing hematopoietic stem cell transplantation. Despite the introduction of several new Aspergillus-active antifungals over the last 30 years, the persisting high mortality of IA in the setting of continuous and profound immunosuppression is a painful reminder of the major unmet need of effective antifungal immune enhancement therapies. The success of chimeric antigen receptor (CAR) T-cell therapy in cancer medicine has inspired researchers to translate this approach to opportunistic infections, including IA. Aiming to refine anti-Aspergillus CAR T-cell therapy and improve its feasibility for future clinical translation, we herein developed and validated a novel antibody-based CAR construct and lentiviral transduction method to accelerate the production of CAR T cells with high targeting efficacy against Aspergillus fumigatus. Our unique approach could provide a promising platform for future clinical translation of CAR T-cell-based antifungal immunotherapy

    Methods of Controlling Invasive Fungal Infections Using CD8+ T Cells

    No full text
    Invasive fungal infections (IFIs) cause high rates of morbidity and mortality in immunocompromised patients. Pattern-recognition receptors present on the surfaces of innate immune cells recognize fungal pathogens and activate the first line of defense against fungal infection. The second line of defense is the adaptive immune system which involves mainly CD4+ T cells, while CD8+ T cells also play a role. CD8+ T cell-based vaccines designed to prevent IFIs are currently being investigated in clinical trials, their use could play an especially important role in acquired immune deficiency syndrome patients. So far, none of the vaccines used to treat IFI have been approved by the FDA. Here, we review current and future antifungal immunotherapy strategies involving CD8+ T cells. We highlight recent advances in the use of T cells engineered using a Sleeping Beauty vector to treat IFIs. Recent clinical trials using chimeric antigen receptor (CAR) T-cell therapy to treat patients with leukemia have shown very promising results. We hypothesized that CAR T cells could also be used to control IFI. Therefore, we designed a CAR that targets 尾-glucan, a sugar molecule found in most of the fungal cell walls, using the extracellular domain of Dectin-1, which binds to 尾-glucan. Mice treated with D-CAR+ T cells displayed reductions in hyphal growth of Aspergillus compared to the untreated group. Patients suffering from IFIs due to primary immunodeficiency, secondary immunodeficiency (e.g., HIV), or hematopoietic transplant patients may benefit from bioengineered CAR T cell therapy

    Titan Cells and Yeast Forms of Cryptococcus neoformans and Cryptococcus gattii Are Recognized by GXMR-CAR

    No full text
    Cryptococcosis, a systemic mycosis that affects both the immunocompromised and immunocompetent, is caused by the inhalation of dehydrated yeasts or fungal spores of Cryptococcus gattii or Cryptococcus neoformans. The Cryptococcus spp. polysaccharide capsule is composed mainly of glucuronoxylomannan鈥擥XM, its major virulence factor. The capsule thickness increases to more than 15 渭m during titanization, favoring the pathogenesis of cryptococcosis. Previous studies demonstrated that cytotoxic T cells that had been bioengineered with GXM-targeting chimeric antigen receptor (GXMR-CAR) were able to recognize C. neoformans by promoting the control of titanization. GXMR-CAR, a second-generation CAR, contains a single-chain variable fragment that originates from a 18B7 clone: a human IgG4 hinge, followed by a human CD28 (transmembrane/cytoplasmic domains) and a CD3蟼 chain. In the current study, we redirected T cells to target distinct C. neoformans and C. gattii cell types by GXMR-CAR. Lentiviral particles carrying the GXMR-CAR sequence were used to transduce Jurkat cells, and these modified cells interacted with the GXM of the C. gattii R265 strain. Moreover, GXMR-CAR mediated the recognition of C. gattii and C. neoformans yeasts with both thin and thick polysaccharide capsules, and GXMR-CAR Jurkat cells interacted with titan cells sourced from both Cryptococcus spp. Thus, bioengineered cells using CAR can improve the treatment of cryptococcosis

    Modification of Hinge/Transmembrane and Signal Transduction Domains Improves the Expression and Signaling Threshold of GXMR-CAR Specific to Cryptococcus spp.

    No full text
    Chimeric antigen receptors (CARs) redirect T cells to recognize a specific target. CAR components play a pivotal role in antigen specificity, structure stability, expression on cell surface, and induction of cellular activation, which together determine the success of CAR T-cell therapy. CAR products targeting B-cell lymphoma encouraged the development of new CAR applications beyond cancer. For example, our group developed a CAR to specifically target glucuronoxylomannan (GXM) in the capsule of Cryptococcus species, called GXMR-CAR or GXMR-IgG4-28ζ. Cryptococcus are fungi that cause the life-threatening disease cryptococcosis, and GXMR-IgG4-28ζ redirected T cells to target yeast and titan cell forms of Cryptococcus spp. Here, we replaced the IgG4-hinge and CD28-transmembrane domains from GXMR-CAR with a CD8α molecule as the hinge/transmembrane and used CD28 or 4-1BB molecules as co-stimulatory domains, creating GXMR-8-28ζ and GXMR-8-BBζ, respectively. Jurkat cells expressing GXMR-CAR containing CD8α as the hinge/transmembrane improved the CAR expression and induced a tonic signaling. GXMR-8-28ζ and GXMR-8-BBζ induced high levels of IL-2 and up-regulation of CD69 expression in the presence of reference strains of C. neoformans and C. gattii. Moreover, GXMR-8-28ζ and GXMR-8-BBζ showed increased strength in response to incubation with clinical isolates of Cryptococcuss spp., and 4-1BB co-stimulatory domain triggered a more pronounced cellular activation. Dasatinib, a tyrosine kinase inhibitor, attenuated the GXMR-CAR signaling cascade’s engagement in the presence or absence of its ligand. This study optimized novel second-generation GXMR-CARs containing the CD8-hinge/transmembrane domain that improved CAR expression, antigen recognition, and signal strength in T-cell activation

    Live Monitoring and Analysis of Fungal Growth, Viability, and Mycelial Morphology Using the IncuCyte NeuroTrack Processing Module

    No full text
    Pathogenic fungi remain a major cause of infectious complications in immunocompromised patients. Microscopic techniques are crucial for our understanding of fungal biology, host-pathogen interaction, and the pleiotropic effects of antifungal drugs on fungal cell growth and morphogenesis. Taking advantage of the morphological similarities of neuronal cell networks and mycelial growth patterns, we employed the IncuCyte time-lapse microscopy system and its NeuroTrack image analysis software package to study growth and branching of a variety of pathogenic yeasts and molds. Using optimized image processing definitions, we validated IncuCyte NeuroTrack analysis as a reliable and efficient tool for translational applications such as antifungal efficacy evaluation and coculture with host immune effector cells. Hence, the IncuCyte system and its NeuroTrack module provide an appealing platform for efficient in vitro studies of antifungal compounds and immunotherapeutic strategies in medical mycology.Efficient live-imaging methods are pivotal to understand fungal morphogenesis, especially as it relates to interactions with host immune cells and mechanisms of antifungal drugs. Due to the notable similarities in growth patterns of neuronal cells and mycelial networks, we sought to repurpose the NeuroTrack (NT) processing module of the IncuCyte time-lapse microscopy system as a tool to quantify mycelial growth and branching of pathogenic fungi. We showed the robustness of NT analysis to study Candida albicans and five different molds and confirmed established characteristics of mycelial growth kinetics. We also documented high intra- and interassay reproducibility of the NT module for a spectrum of spore inocula and culture periods. Using GFP-expressing Aspergillus fumigatus and Rhizopus arrhizus, the feasibility of fluorescence-based NT analysis was validated. In addition, we performed proof-of-concept experiments of NT analysis for several translational applications such as studying the morphogenesis of a filamentation-defective C. albicans mutant, the effects of different classes of antifungals (polyenes, azoles, and echinocandins), and coculture with host immune cells. High accuracy was found, even at high immune cell-to-fungus ratios or in the presence of fungal debris. For antifungal efficacy studies, addition of a cytotoxicity dye further refined IncuCyte-based analysis, facilitating real-time determination of fungistatic and fungicidal activity in a single assay. Complementing conventional MIC-based assays, NT analysis is an appealing method to study fungal morphogenesis and viability in the context of antifungal compound screening and evaluation of novel immune therapeutics
    corecore