4,911 research outputs found

    Co-evolution of Content Popularity and Delivery in Mobile P2P Networks

    Full text link
    Mobile P2P technology provides a scalable approach to content delivery to a large number of users on their mobile devices. In this work, we study the dissemination of a \emph{single} content (e.g., an item of news, a song or a video clip) among a population of mobile nodes. Each node in the population is either a \emph{destination} (interested in the content) or a potential \emph{relay} (not yet interested in the content). There is an interest evolution process by which nodes not yet interested in the content (i.e., relays) can become interested (i.e., become destinations) on learning about the popularity of the content (i.e., the number of already interested nodes). In our work, the interest in the content evolves under the \emph{linear threshold model}. The content is copied between nodes when they make random contact. For this we employ a controlled epidemic spread model. We model the joint evolution of the copying process and the interest evolution process, and derive the joint fluid limit ordinary differential equations. We then study the selection of the parameters under the content provider's control, for the optimization of various objective functions that aim at maximizing content popularity and efficient content delivery.Comment: 21 pages, 16 figure

    Adaptive multigrid domain decomposition solutions for viscous interacting flows

    Get PDF
    Several viscous incompressible flows with strong pressure interaction and/or axial flow reversal are considered with an adaptive multigrid domain decomposition procedure. Specific examples include the triple deck structure surrounding the trailing edge of a flat plate, the flow recirculation in a trough geometry, and the flow in a rearward facing step channel. For the latter case, there are multiple recirculation zones, of different character, for laminar and turbulent flow conditions. A pressure-based form of flux-vector splitting is applied to the Navier-Stokes equations, which are represented by an implicit lowest-order reduced Navier-Stokes (RNS) system and a purely diffusive, higher-order, deferred-corrector. A trapezoidal or box-like form of discretization insures that all mass conservation properties are satisfied at interfacial and outflow boundaries, even for this primitive-variable, non-staggered grid computation

    The Coaching Kaleidoscope: Insights from the Inside

    Get PDF
    Its a Book review. Check out full PDF instea

    Reflections on Leadership and Career Development

    Get PDF
    Its a Book review. Check out full PDF instea

    Obliquity: Why Our Goals are Best Achieved Indirectly

    Get PDF
    Its a Book review. Check out full PDF instea

    Review of HBR’s 10 Must Reads on Managing Yourself

    Get PDF
    Its a Book review. Check out full PDF instea

    Understanding Michael Porter: The Essential Guide to Competition and Strategy

    Get PDF
    Its a Book review. Check out full PDF instea
    corecore