188,416 research outputs found

    Purging of untrustworthy recommendations from a grid

    Full text link
    In grid computing, trust has massive significance. There is lot of research to propose various models in providing trusted resource sharing mechanisms. The trust is a belief or perception that various researchers have tried to correlate with some computational model. Trust on any entity can be direct or indirect. Direct trust is the impact of either first impression over the entity or acquired during some direct interaction. Indirect trust is the trust may be due to either reputation gained or recommendations received from various recommenders of a particular domain in a grid or any other domain outside that grid or outside that grid itself. Unfortunately, malicious indirect trust leads to the misuse of valuable resources of the grid. This paper proposes the mechanism of identifying and purging the untrustworthy recommendations in the grid environment. Through the obtained results, we show the way of purging of untrustworthy entities.Comment: 8 pages, 4 figures, 1 table published by IJNGN journal; International Journal of Next-Generation Networks (IJNGN) Vol.3, No.4, December 201

    Alias-free, real coefficient m-band QMF banks for arbitrary m

    Get PDF
    Based on a generalized framework for alias free QMF banks, a theory is developed for the design of uniform QMF banks with real-coefficient analysis filters, such that aliasing can be completely canceled by appropriate choice of real-coefficient synthesis filters. These results are then applied for the derivation of closed-form expressions for the synthesis filters (both FIR and IIR), that ensure cancelation of aliasing for a given set of analysis filters. The results do not involve the inversion of the alias-component (AC) matrix

    A note on convexity of sections of quaternionic numerical range

    Full text link
    The quaternionic numerical range of matrices over the ring of quaternions is not necessarily convex. We prove Toeplitz-Hausdorff like theorem, that is, for any given quaternionic matrix every section of its quaternionic numerical range is convex. We provide some additional equivalent conditions for the quaternionic numerical range of matrices over quaternions to be convex and prove some numerical radius inequalities

    An Alternate Construction of an Access-Optimal Regenerating Code with Optimal Sub-Packetization Level

    Full text link
    Given the scale of today's distributed storage systems, the failure of an individual node is a common phenomenon. Various metrics have been proposed to measure the efficacy of the repair of a failed node, such as the amount of data download needed to repair (also known as the repair bandwidth), the amount of data accessed at the helper nodes, and the number of helper nodes contacted. Clearly, the amount of data accessed can never be smaller than the repair bandwidth. In the case of a help-by-transfer code, the amount of data accessed is equal to the repair bandwidth. It follows that a help-by-transfer code possessing optimal repair bandwidth is access optimal. The focus of the present paper is on help-by-transfer codes that employ minimum possible bandwidth to repair the systematic nodes and are thus access optimal for the repair of a systematic node. The zigzag construction by Tamo et al. in which both systematic and parity nodes are repaired is access optimal. But the sub-packetization level required is rkr^k where rr is the number of parities and kk is the number of systematic nodes. To date, the best known achievable sub-packetization level for access-optimal codes is rk/rr^{k/r} in a MISER-code-based construction by Cadambe et al. in which only the systematic nodes are repaired and where the location of symbols transmitted by a helper node depends only on the failed node and is the same for all helper nodes. Under this set-up, it turns out that this sub-packetization level cannot be improved upon. In the present paper, we present an alternate construction under the same setup, of an access-optimal code repairing systematic nodes, that is inspired by the zigzag code construction and that also achieves a sub-packetization level of rk/rr^{k/r}.Comment: To appear in National Conference on Communications 201

    Can re-entrance be observed in force induced transitions?

    Full text link
    A large conformational change in the reaction co-ordinate and the role of the solvent in the formation of base-pairing are combined to settle a long standing issue {\it i.e.} prediction of re-entrance in the force induced transition of DNA. A direct way to observe the re-entrance, i.e a strand goes to the closed state from the open state and again to the open state with temperature, appears difficult to be achieved in the laboratory. An experimental protocol (in direct way) in the constant force ensemble is being proposed for the first time that will enable the observation of the re-entrance behavior in the force-temperature plane. Our exact results for small oligonucleotide that forms a hairpin structure provide the evidence that re-entrance can be observed.Comment: 12 pages and 5 figures (RevTex4). Accepted in Europhys Lett. (2009
    corecore