94,752 research outputs found

    Delay Optimal Event Detection on Ad Hoc Wireless Sensor Networks

    Full text link
    We consider a small extent sensor network for event detection, in which nodes take samples periodically and then contend over a {\em random access network} to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center to process the measurements. The Bayesian setting is assumed; i.e., the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is \emph{network-oblivious} and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is \emph{network-aware} and processes measurements as they arrive, but in a time causal order. In this case, the decision statistic depends on the network delays as well, whereas in the network-oblivious case, the decision statistic does not depend on the network delays. This yields a Bayesian change detection problem with a tradeoff between the random network delay and the decision delay; a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network--oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network--aware case, the optimal stopping problem is analysed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient statistic for decision is found to be the network-state and the posterior probability of change having occurred given the measurements received and the state of the network. The optimal regimes are studied using simulation.Comment: To appear in ACM Transactions on Sensor Networks. A part of this work was presented in IEEE SECON 2006, and Allerton 201

    Coexisting tuneable fractions of glassy and equilibrium long-range-order phases in manganites

    Get PDF
    Antiferromagnetic-insulating(AF-I) and the ferromagnetic-metallic(FM-M) phases coexist in various half-doped manganites over a range of temperature and magnetic field, and this is often believed to be an essential ingredient to their colossal magnetoresistence. We present magnetization and resistivity measurements on Pr(0.5)Ca(0.5)Mn(0.975)Al(0.025)O(3) and Pr(0.5)Sr(0.5)MnO(3) showing that the fraction of the two coexisting phases at low-temperature in any specified measuring field H, can be continuously controlled by following designed protocols traversing field-temperature space; for both materials the FM-M fraction rises under similar cooling paths. Constant-field temperature variations however show that the former sample undergoes a 1st order transition from AF-I to FM-M with decreasing T, while the latter undergoes the reverse transition. We suggest that the observed path-dependent phase-separated states result from the low-T equilibrium phase coexisting with supercooled glass-like high temperature phase, where the low-T equilibrium phases are actually homogeneous FM-M and AF-I phases respectively for the two materials
    corecore