4 research outputs found

    Structural analysis and immunogenicity of recombinant major envelope protein (rA27L) of buffalopox virus, a zoonotic Indian vaccinia-like virus

    No full text
    Buffalopox virus (BPXV), an Indian variant of vaccinia virus (VACV), is a zoonotic agent and affects buffaloes, cattle and humans. A27L is one of the conserved major immuno-dominant envelope proteins of orthopox viruses (OPVs) involved in viral entry/maturation and elicits neutralizing antibodies. In this study, the A27L gene of BPXV-Vij/96 strain encoding recombinant mature A27L (21S to E110) and C-terminal truncated A27L-LZD (21S to N84aa) proteins were cloned and over-expressed in Escherichia coli as fusion proteins. Structurally, A27L of BPXV was similar to that of VACV and found to contain four regions including a potential coiled-coil motif (CCM) in the centre (43 to 84aa). Oligomerization of recombinant A27L fusion protein (∼30 kDa) leads to the formation of dimer/trimers/tetramers under non-reducing conditions. Further, the purified rA27L protein was used for active immunization of rabbit (250 μg/rabbit) and adult mice (10 μg and 50 μg/mice) with or without adjuvants (FCA, alum and CpG). Immune response measured by using indirect-ELISA and SNT revealed a gradual increase in antigen specific serum IgG as well as neutralization antibody titers. Upon challenge with virulent BPXV strain, a protection of 60% was observed in suckling mice passively administered with anti-rA27L sera. No cross-reactivity of rA27L protein with hyperimmune sera against ORFV, GTPV, SPPV, PPRV, FMDV and BTV was noticed in indirect-ELISA. The study indicated that the rA27L protein is a safe and potential prophylactic as well as diagnostic antigen for buffalopox

    Immunogenicity and protective efficacy of recombinant major envelope protein (rH3L) of buffalopox virus in animal models.

    No full text
    Buffalopox virus, a zoonotic Indian vaccinia-like virus, is responsible for contagious disease affecting mainly buffaloes, cattle and humans. H3L gene, encoding for an immunodominant major envelope protein of intracellular mature virion of orthopoxviruses, is highly conserved and found to elicit neutralizing antibodies. Therefore in the present study, the immunogenicity and protective efficacy of the recombinant H3L protein of buffalopox virus in laboratory animal models has been evaluated. A partial H3L gene encoding for the C-terminal truncated ectodomain of H3L protein (1M to I280) of BPXV-Vij/96 strain was cloned, over-expressed and purified as histidine-tagged fusion protein (50 kDa) from Escherichia coli using Ni-NTA affinity chromatography. The purified rH3L protein was further used for active immunization of guinea pig (250 μg/dose) and adult mice (10 μg and 50 μg/dose) with or without adjuvants (alum, Freund's Complete Adjuvant and CpG). Subsequently, a gradual increase in antigen specific serum IgG as well as neutralizing antibody titres measured by using indirect-ELISA and serum neutralization test respectively, was noted in both guinea pigs and mouse models. Suckling mice immunized passively with anti-H3L serum showed 80% pre-exposure prophylaxis upon challenge with virulent buffalopox virus strain. An indirect-ELISA based on rH3L protein showed no cross-reactivity with hyperimmune sera against sheeppox virus (SPPV), goatpox virus (GTPV), orf virus (ORFV), foot- and- mouth disease virus (FMDV), peste des petits ruminants virus (PPRV) and bluetongue virus (BTV) during the course of study. The study highlights the potential utility of rH3L protein as a safer prophylactic and diagnostic reagent for buffalopox

    Functional characterization of recombinant major envelope protein (rB2L) of orf virus.

    No full text
    Orf, or contagious ecthyma, a highly contagious transboundary disease of sheep and goats, is caused by a double-stranded DNA virus (ORFV) belonging to the genus Parapoxvirus of the family Poxviridae. The ORFV genome encodes the major envelope proteins B2L and F1L, which have been found to be highly immunogenic and have multiple functional characteristics. In order to investigate the functional properties of the B2L protein, in this study, the B2L gene of ORFV strain 59/05, encoding recombinant mature B2L (aa 1M-D334), was produced as a fusion protein in Escherichia coli. The functional characteristics of purified rB2L fusion protein (~60 kDa) were evaluated in vivo and in vitro, showing that this protein had lipase and immunomodulatory activities. Immunization trials involving laboratory animals (mice, rabbits and guinea pigs) using either constant or graded doses of rB2L fusion protein with or without adjuvants (FCA, alum) as well as co-administration with candidate rErns-Ag protein of classical swine fever virus (CSFV) indicated that the rB2L protein is immunogenic and has immunomodulatory properties. This study shows the potential utility of the rB2L protein as a safe and novel adjuvant in veterinary vaccine formulations

    Co-administration of recombinant major envelope proteins (rA27L and rH3L) of buffalopox virus provides enhanced immunogenicity and protective efficacy in animal models.

    No full text
    Buffalopox virus (BPXV) and other vaccinia-like viruses (VLVs) are causing an emerging/re-emerging zoonosis affecting buffaloes, cattle and humans in India and other countries. A27L and H3L are immuno-dominant major envelope proteins of intracellular mature virion (IMV) of orthopoxviruses (OPVs) and are highly conserved with an ability to elicit neutralizing antibodies. In the present study, two recombinant proteins namely; rA27L (21S to E110; ∼30 kDa) and rH3L(1M to I280; ∼50 kDa) of BPXV-Vij/96 produced from Escherichia coli were used in vaccine formulation. A combined recombinant subunit vaccine comprising rA27L and rH3L antigens (10 μg of each) was used for active immunization of adult mice (20μg/dose/mice) with or without adjuvant (FCA/FIA) by intramuscular route. Immune responses revealed a gradual increase in antigen specific serum IgG as well as neutralizing antibody titers measured by using indirect-ELISA and serum neutralization test (SNT) respectively, which were higher as compared to that elicited by individual antigens. Suckling mice passively administered with combined anti-A27L and anti-H3L sera showed a complete (100%) pre-exposure protection upon challenge with virulent BPXV. Conclusively, this study highlights the potential utility of rA27L and rH3L proteins as safer candidate prophylactic antigens in combined recombinant subunit vaccine for buffalopox as well as passive protective efficacy of combined sera in employing better pre-exposure protection against virulent BPXV
    corecore