178,654 research outputs found

    Giant Tunneling Magnetoresistance, Glassiness, and the Energy Landscape at Nanoscale Cluster Coexistence

    Full text link
    We present microscopic results on the giant tunneling magnetoresistance that arises from the nanoscale coexistence of ferromagnetic metallic (FMM) and antiferromagnetic insulating (AFI) clusters in a disordered two dimensional electron system with competing double exchange and superexchange interactions. Our Monte Carlo study allows us to map out the different field regimes in magnetotransport and correlate it with the evolution of spatial structures. At coexistence, the isotropic O(3) model shows signs of slow relaxation, and has a high density of low energy metastable states, but no genuine glassiness. However, in the presence of weak magnetic anisotropy, and below a field dependent irreversibility temperature TirrT_{irr}, the response on field cooling (FC) differs distinctly from that on zero field cooling (ZFC). We map out the phase diagram of this `phase coexistence glass', highlight how its response differs from that of a standard spin glass, and compare our results with data on the manganites.Comment: Final published versio

    The Contribution of Hot Electron Spin Polarization to the Magnetotransport in a Spin-Valve Transistor at Finite Temperatures

    Full text link
    The effect of spin mixing due to thermal spin waves and temperature dependence of hot electron spin polarization to the collector current in a spin-valve transistor has been theoretically explored. We calculate the collector current as well as the temperature dependence of magnetocurrent at finite temperatures to investigate the relative importance of spin mixing and hot electron spin polarization. In this study the inelastic scattering events in ferromagnetic layers have been taken into account to explore our interests. The theoretical calculations suggest that the temperature dependence of hot electron spin polarization has substantial contribution to the magnetotransport in the spin-valve transistor.Comment: 8 pages and 6 figure

    Quantum entanglement and Hawking temperature

    Full text link
    The thermodynamic entropy of an isolated system is given by its von Neumann entropy. Over the last few years, there is an intense activity to understand thermodynamic entropy from the principles of quantum mechanics. More specifically, is there a relation between the (von Neumann) entropy of entanglement between a system and some (separate) environment is related to the thermodynamic entropy? It is difficult to obtain the relation for many body systems, hence, most of the work in the literature has focused on small number systems. In this work, we consider black-holes --- that are simple yet macroscopic systems --- and show that a direct connection could not be made between the entropy of entanglement and the Hawking temperature. In this work, within the adiabatic approximation, we explicitly show that the Hawking temperature is indeed given by the rate of change of the entropy of entanglement across a black hole's horizon with regard to the system energy. This is yet another numerical evidence to understand the key features of black hole thermodynamics from the viewpoint of quantum information theory.Comment: 10 pages, 5 figures (To appear in Eur. Phys. J. C

    Can re-entrance be observed in force induced transitions?

    Full text link
    A large conformational change in the reaction co-ordinate and the role of the solvent in the formation of base-pairing are combined to settle a long standing issue {\it i.e.} prediction of re-entrance in the force induced transition of DNA. A direct way to observe the re-entrance, i.e a strand goes to the closed state from the open state and again to the open state with temperature, appears difficult to be achieved in the laboratory. An experimental protocol (in direct way) in the constant force ensemble is being proposed for the first time that will enable the observation of the re-entrance behavior in the force-temperature plane. Our exact results for small oligonucleotide that forms a hairpin structure provide the evidence that re-entrance can be observed.Comment: 12 pages and 5 figures (RevTex4). Accepted in Europhys Lett. (2009

    An Algorithm to Generate Classical Solutions for String Effective Action

    Full text link
    It is shown explicitly, that a number of solutions for the background field equations of the string effective action in space-time dimension D can be generated from any known lower dimensional solution, when background fields have only time dependence. An application of the result to the two dimensional charged black hole is presented. The case of background with more general coordinate dependence is also discussed.Comment: 12 page
    • …
    corecore