432 research outputs found

    Expression of HIV receptors, alternate receptors and co-receptors on tonsillar epithelium: implications for HIV binding and primary oral infection

    Get PDF
    BACKGROUND: Primary HIV infection can develop from exposure to HIV in the oral cavity. In previous studies, we have documented rapid and extensive binding of HIV virions in seminal plasma to intact mucosal surfaces of the palatine tonsil and also found that virions readily penetrated beneath the tissue surfaces. As one approach to understand the molecular interactions that support HIV virion binding to human mucosal surfaces, we have examined the distribution of the primary HIV receptor CD4, the alternate HIV receptors heparan sulfate proteoglycan (HS) and galactosyl ceramide (GalCer) and the co-receptors CXCR4 and CCR5 in palatine tonsil. RESULTS: Only HS was widely expressed on the surface of stratified squamous epithelium. In contrast, HS, GalCer, CXCR4 and CCR5 were all expressed on the reticulated epithelium lining the tonsillar crypts. We have observed extensive variability, both across tissue sections from any tonsil and between tonsils, in the distribution of epithelial cells expressing either CXCR4 or CCR5 in the basal and suprabasal layers of stratified epithelium. The general expression patterns of CXCR4, CCR5 and HS were similar in palatine tonsil from children and adults (age range 3–20). We have also noted the presence of small clusters of lymphocytes, including CD4(+ )T cells within stratified epithelium and located precisely at the mucosal surfaces. CD4(+ )T cells in these locations would be immediately accessible to HIV virions. CONCLUSION: In total, the likelihood of oral HIV transmission will be determined by macro and micro tissue architecture, cell surface expression patterns of key molecules that may bind HIV and the specific properties of the infectious inoculum

    Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules

    Get PDF
    In this report we demonstrate a simple process based on amine chemistry for the phase transfer of platinum nanoparticles from an aqueous to an organic solution. The phase transfer was accomplished by vigorous shaking of a biphasic mixture of platinum nanoparticles synthesised in an aqueous medium and octadecylamine (ODA) in hexane. During shaking of the biphasic mixture, the aqueous platinum nanoparticles complex via either coordination bond formation or weak covalent interaction with the ODA molecules present in the organic phase. This process renders the nanoparticles sufficiently hydrophobic and dispersible in the organic phase. The ODA-stabilised platinum nanoparticles could be separated out from hexane in the form of a powder that is readily redispersible in weakly polar and non-polar organic solvents. The ODA-capped platinum nanoparticles show high catalytic activity in hydrogenation reactions and this is demonstrated in the efficient conversion of styrene to ethyl benzene. The nature of binding of the ODA molecules to the platinum nanoparticles surface was characterised by thermogravimetry, transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR)

    Potentials of genotypes, morpho-physio-biochemical traits, and growing media on shelf life and future prospects of gene editing in tomatoes

    Get PDF
    Background: To study the genetic basis of the impact of genotypes and morpho-physio-biochemical traits under different organic and inorganic fertilizer doses on the shelf life attribute of tomatoes, field experiments were conducted in randomized block designs during the rabi seasons of 2018–2019 and 2019–2020. The experiment comprised three diverse nutrient environments [T1—organic; T2—inorganic; T3—control (without any fertilizers)] and five tomato genotypes with variable growth habits, specifically Angoorlata (Indeterminate), Avinash-3 (semi-determinate), Swaraksha (semi-determinate), Pusa Sheetal (semi-determinate), and Pusa Rohini (determinate).Results: The different tomato genotypes behaved apparently differently from each other in terms of shelf life. All the genotypes had maximum shelf life when grown in organic environments. However, the Pusa Sheetal had a maximum shelf life of 8.35 days when grown in an organic environment and showed an increase of 12% over the control. The genotype Pusa Sheetal, organic environment and biochemical trait Anthocyanin provides a promise as potential contributor to improve the keeping quality of tomatoes.Conclusion: The genotype Pusa Sheetal a novel source for shelf life, organic environment, and anthocyanin have shown promises for extended shelf life in tomatoes. Thus, the identified trait and genotype can be utilized in tomato improvement programs. Furthermore, this identified trait can also be targeted for its quantitative enhancement in order to increase tomato shelf life through a genome editing approach. A generalized genome editing mechanism is consequently suggested

    Insulin like growth factor 2 (Igf2) and its receptor gene (Igf2r) showed opposite expression in diploid parthenogenetic embryos in Capra hircus

    Get PDF
    The present research work was proposed to compare the expression of development related genes (Igf2 and Igf2r) among diploid parthenogenetic (DIP), female sexed in vivo and female sexed in vitro produced embryonic cell colony. The good quality caprine oocytes were matured in presence of cytochalasin B (CCB) and activated by ethanol (7%) for 5 min followed by incubation with 2 mM 6-dimethyl amino purine (DMAP) for 4 h for DIP embryos production and embryo development was recorded. We have explored comparative expression profile of paternally (Igf2r) and maternally (Igf2) imprinted genes among DIP, female sexed IVF and female sexed in vivo derived embryos. Embryonic cell colony were developed from 8–16 and morula stage DIP, IVF and in vivo derived embryos and these colonies were used for studying the paternal and maternal imprinted genes. Overall, we observed higher expression of maternally expressed genes (Igf2r) in DIP compared to in vivo and IVF derived embryonic cell colony. The expression of paternal genes (Igf2) was low in DIP compared to in vivo and IVF derived embryonic cell colony

    Necdin and neuronatin genes expression among diploid parthenogenetic, IVF and in vivo derived female sexed embryos during preimplantation development in goat

    Get PDF
    The present research work was undertaken to compare the expression of necdin (Ndn) and neuronatin (Nnat) genes among diploid parthenogenetic (DIP), female sexed in vivo and female sexed in vitro produced embryonic cell colony. The good quality caprine oocytes were matured in presence of cytochalasin B (CCB) and activated by ethanol (7%) for 5 min followed by incubation with 2mM 6-dimethyl amino purine (DMAP) for 4 hrs for DIP embryos production. Embryonic cell colony were developed from 8–16 and morula stage DIP, IVF and in vivo derived embryos and these colonies were used for studying the Ndn and Nnat gene expression. There was no expression of Ndn gene in both the stages of DIP embryos, while this gene was expressed almost similarly in IVF and in vivo derived 8–16 cell stages but down regulated significantly in morula of IVF compared to in vivo derived embryonic cell colony. The Nnat gene expression was absent in in vivo derived 8–16 cell and morula stage embryos, while it was expressed in both the stages of DIP and IVF embryos. Further, it was observed that the expression of this gene was significantly lower in DIP embryos of both the stages as compared to IVF one. There was no significant difference of this gene expression between 8–16 cell and morula of DIP but morula of IVF showed significantly higher expression than 8–16 cell stage

    Effect of graphene oxide interlayer electron-phonon coupling on the electro-optical parameters of a ferroelectric liquid crystal

    Get PDF
    A small concentration of graphene oxide (GO) was dispersed in ferroelectric liquid crystal (FLC), and the effect of the same on the electro-optical parameters of the FLC-GO composite has been investigated using various techniques, such as Raman spectroscopy, UV-visible absorbance, XRD, and polarizing optical microscopy. The electro-optical parameters were remarkably modified and this effect is found to be strongly dependent on the cell thickness. Interlayer electron-phonon coupling and relative orientation between GO and the director of FLC are responsible for these effects. The presence of GO mainly induces local orientation in the FLC molecules at the interface, which was confirmed by X-ray diffraction results. The change in the UV absorbance of the composite is mainly due to scattering of incident photonic radiation through GO, smectic layers, and multi-domains. This study demonstrates optimization of the cell thickness in case of nanomaterials dispersed in mesogenic systems for their device applicability, such as UV light filters, and for the tailoring of material parameters by varying the cell thickness

    Integrating transcriptomic and proteomic data for accurate assembly and annotation of genomes

    Get PDF
    © 2017 Wong et al.; Published by Cold Spring Harbor Laboratory Press. Complementing genome sequence with deep transcriptome and proteome data could enable more accurate assembly and annotation of newly sequenced genomes. Here, we provide a proof-of-concept of an integrated approach for analysis of the genome and proteome of Anopheles stephensi, which is one of the most important vectors of the malaria parasite. To achieve broad coverage of genes, we carried out transcriptome sequencing and deep proteome profiling of multiple anatomically distinct sites. Based on transcriptomic data alone, we identified and corrected 535 events of incomplete genome assembly involving 1196 scaffolds and 868 protein-coding gene models. This proteogenomic approach enabled us to add 365 genes that were missed during genome annotation and identify 917 gene correction events through discovery of 151 novel exons, 297 protein extensions, 231 exon extensions, 192 novel protein start sites, 19 novel translational frames, 28 events of joining of exons, and 76 events of joining of adjacent genes as a single gene. Incorporation of proteomic evidence allowed us to change the designation of more than 87 predicted noncoding RNAs to conventional mRNAs coded by protein-coding genes. Importantly, extension of the newly corrected genome assemblies and gene models to 15 other newly assembled Anopheline genomes led to the discovery of a large number of apparent discrepancies in assembly and annotation of these genomes. Our data provide a framework for how future genome sequencing efforts should incorporate transcriptomic and proteomic analysis in combination with simultaneous manual curation to achieve near complete assembly and accurate annotation of genomes

    Vulnerable Plaque in Patients with Acute Coronary Syndrome: Identification, Importance, and Management

    Get PDF
    MI is a leading cause of morbidity and mortality worldwide. Coronary artery thrombosis is the final pathologic feature of the most cases of acute MI primarily caused by atherosclerotic coronary artery disease. The concept of vulnerable plaque has evolved over the years but originated from early pioneering work unveiling the crucial role of plaque rupture and subsequent coronary thrombosis as the dominant cause of MI. Along with systemic cardiovascular risk factors, developments of intravascular and non-invasive imaging modalities have allowed us to identify coronary plaques thought to be at high risk for rupture. However, morphological features alone may only be one of many factors which promote plaque progression. The current vulnerable-plaque-oriented approaches to accomplish personalized risk assessment and treatment have significant room for improvement. In this review, the authors discuss recent advances in the understanding of vulnerable plaque and its management strategy from pathology and clinical perspectives

    Influenza A Virus Nucleoprotein Exploits Hsp40 to Inhibit PKR Activation

    Get PDF
    BACKGROUND: Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58(IPK)), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58(IPK) is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58(IPK) activation was hitherto unknown. PRINCIPAL FINDINGS: Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58(IPK) from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58(IPK) activation and subsequent inhibition of PKR-mediated host response during IAV infection. SIGNIFICANCE: Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58(IPK) mediated inhibition of PKR activity during IAV infection
    • …
    corecore