2 research outputs found
Data-driven models for reliability prognostics of gas turbines
Thesis: S.M., Massachusetts Institute of Technology, School of Engineering, Center for Computational Engineering, Computation for Design and Optimization Program, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 69-70).This thesis develops three data-driven models of a commercially operating gas turbine, and applies inference techniques for reliability prognostics. The models focus on capturing feature signals (continuous state) and operating modes (discrete state) that are representative of the remaining useful life of the solid welded rotor. The first model derives its structure from a non-Bayesian parametric hidden Markov model. The second and third models are based on Bayesian nonparametric methods, namely the hierarchical Dirchlet process, and can be viewed as extensions of the first model. For all three approaches, the model structure is first prescribed, parameter estimation procedures are then discussed, and lastly validation and prediction results are presented, using proposed degradation metrics. All three models are trained using five years of data, and prediction algorithms are tested on a sixth year of data. Results indicate that model 3 is superior, since it is able to detect new operating modes, which the other models fail to do. The turbine is based on a sequential combustion design and operates in the 50Hz wholesale electricity market. The rotor is the most critical asset of the machine and is subject to nonlinear loadings induced from three sources: i) day-to-day variations in total power generated by the turbine; ii) machine trips in high and low loading conditions; iii) downtimes due to scheduled maintenance and inspection events. These sources naturally lead to dynamics, where random (resp. forced) transitions occur due to switching in the operating mode (resp. trip and/or maintenance events). The degradation of the rotor is modeled by measuring the abnormality witnessed by the cooling air temperature within different modes. Generation companies can utilize these indicators for making strategic decisions such as maintenance scheduling and generation planning.by Gaurev Kumar.S.M
Stochastic landslide vulnerability modeling in space and time in a part of the northern Himalayas, India
Little is known about the quantitative vulnerability analysis to landslides as not many attempts have been made to assess it comprehensively. This study assesses the spatio-temporal vulnerability of elements at risk to landslides in a stochastic framework. The study includes buildings, persons inside buildings, and traffic as elements at risk to landslides. Building vulnerability is the expected damage and depends on the position of a building with respect to the landslide hazard at a given time. Population and vehicle vulnerability are the expected death toll in a building and vehicle damage in space and time respectively. The study was carried out in a road corridor in the Indian Himalayas that is highly susceptible to landslides. Results showed that 26% of the buildings fall in the high and very high vulnerability categories. Population vulnerability inside buildings showed a value >0.75 during 0800 to 1000 hours and 1600 to 1800 hours in more buildings that other times of the day. It was also observed in the study region that the vulnerability of vehicle is above 0.6 in half of the road stretches during 0800 hours to 1000 hours and 1600 to 1800 hours due to high traffic density on the road section. From this study, we conclude that the vulnerability of an element at risk to landslide is a space and time event, and can be quantified using stochastic modeling. Therefore, the stochastic vulnerability modeling forms the basis for a quantitative landslide risk analysis and assessment