4 research outputs found
Opportunities and challenges in triboelectric nanogenerator (TENG) based sustainable energy generation technologies: a mini-review
Almost ten years after the publication of the first triboelectric nanogenerator (TENG) paper in 2012, this review gives a brief overview of recent technological advances in applying TENG technology to key sustainable and renewable energy applications. The paper examines progress of TENG applications in four key areas such as wearables, wave, wind and transport. TENGs have advanced hugely since its inception and approaches to apply them to a host of freely available sources of kinetic energy have been developed. However, electrical output remains low (mostly less than 500 W/m2) compared to some other forms of energy generation and the main challenges for the future appear to be further boosting output power and current, fabricating advanced TENGs economically and designing TENGs for lifetime survival in various practical environments. It concludes with a discussion of pressing challenges for realizing the full potential of TENGs in these application areas particularly from the perspective of materials and fabrication. It is noted that considerable research and development should be required to enable large-scale manufacture of TENG based devices. TENGs will be instrumental in the future evolution of the Internet of Things (IoTs), human-machine interfacing, machine learning applications and ‘net-zero emission’ technologies
Straightforward and precise approach to replicate complex hierarchical structures from plant surfaces onto soft matter polymer
The surfaces of plant leaves are rarely smooth and often possess a species-specific micro- and/or nano-structuring. These structures usually influence the surface functionality of the leaves such as wettability, optical properties, friction and adhesion in insect–plant interactions. This work presents a simple, convenient, inexpensive and precise two-step micro-replication technique to transfer surface microstructures of plant leaves onto highly transparent soft polymer material. Leaves of three different plants with variable size (0.5–100 µm), shape and complexity (hierarchical levels) of their surface microstructures were selected as model bio-templates. A thermoset epoxy resin was used at ambient conditions to produce negative moulds directly from fresh plant leaves. An alkaline chemical treatment was established to remove the entirety of the leaf material from the cured negative epoxy mould when necessary, i.e. for highly complex hierarchical structures. Obtained moulds were filled up afterwards with low viscosity silicone elastomer (PDMS) to obtain positive surface replicas. Comparative scanning electron microscopy investigations (original plant leaves and replicated polymeric surfaces) reveal the high precision and versatility of this replication technique. This technique has promising future application for the development of bioinspired functional surfaces. Additionally, the fabricated polymer replicas provide a model to systematically investigate the structural key points of surface functionalities
Wearable nanocomposite textile-based piezoelectric and triboelectric nanogenerators: progress and perspectives
In recent years, the widespread adoption of next-generation wearable electronics has been facilitated by the integration of advanced nanogenerator technology with conventional textiles. This integration has led to the development of textile-based nanogenerators (t-NGs), which hold tremendous potential for harvesting mechanical energy from the surrounding environment and serving as power sources for self-powered electronics. Textile structures are inherently flexible, making them well-suited for wearable applications. However, their electrical performance as nanogenerators is significantly limited when used without any modifications. To address this limitation and enhance the electrical performance of textile-based nanogenerators, nanocomposite textiles have been extensively utilized for fabricating advanced nanogenerators. This critical review focuses on the recent progress in wearable nanocomposite textiles-based piezoelectric and triboelectric nanogenerators. The review covers the fundamentals of piezoelectricity and triboelectricity, the working principles of nanogenerators, and the selection of materials. Furthermore, it provides a detailed discussion of nanocomposite textiles in various forms, such as fibers or yarns, fabrics, and electrospun nanofibrous webs, which are employed in piezoelectric and triboelectric nanogenerators. The review also highlights the challenges associated with their implementation and outlines the prospects of textile-based nanogenerators. It can be concluded that nanocomposite textile based piezoelectric and triboelectric nanogenerators exhibit better electrical output and mechanical strength compared to conventional textile based nanogenerators. Nanocomposite electrospun web based piezoelectric nanogenerators exhibit higher piezoelectric output compared with nanocomposite fibre/yarn or fabric based piezoelectric nanogenerators. This is because an in-situ poling takes place in electrospinning unlike with fibre or fabric based piezoelectric nanogenerators. Nanocomposite electrospun web based triboelectric nanogenerators also show better triboelectric output compared to the fibre or fabric-based equivalents. This is due to the higher contact area developed with electrospun nanocomposite webs compared to the fibre or fabric cases. Overall, it can be concluded that while nanocomposite construction can boost output and durability of textile based nanogenerators, more research is required to bring output, stability and durability up to the levels achievable with non-textile based devices
The effect of chitosan incorporation on physico-mechanical and biological characteristics of a calcium silicate filling material
Objectives: A tricalcium silicate-based cement, Biodentineâ„¢, has displayed antibiofilm activity when mixed with chitosan powder. This study aimed to assess the effect of chitosan incorporation on the physico-mechanical and biological properties of Biodentineâ„¢. Methods: In this study, medium molecular weight chitosan powder was incorporated into Biodentineâ„¢ in varying proportions (2.5 wt%, 5 wt%, 10 wt%, and 20 wt%). The setting time was determined using a Vicat apparatus, solubility was assessed by calculating weight variation after water immersion, radiopacity was evaluated and expressed in millimeters of aluminum, the compressive strength was evaluated using an Instron testing machine, and the microhardness was measured with a Vickers microhardness tester. In addition, surface topography of specimens was analyzed using scanning electron microscopy, and the effect of chitosan on the viability of human embryonic kidney (HEK 293) cells was measured by a colorimetric MTT assay. Results: Incorporation of 2.5 wt% and 5 wt% chitosan powder delivered an advantage by speeding up the setting time of Biodentine material. However, the incorporation of chitosan compromised all other material properties and the crystalline structure in a dose-dependent manner. The chitosan-modified material also showed significant decreases in the proliferation of the HEK 293 cells, signifying decreased biocompatibility. Significance: Chitosan incorporation into calcium silicate materials adversely affects the physical and biological properties of the material. Despite the increased antimicrobial activity of the modified material, the diminution in these properties is likely to reduce its clinical value