9 research outputs found

    Comparison of Capillary Architecture between Slow and Fast Muscles in Rats Using a Confocal Laser Scanning Microscope

    Get PDF
    The skeletal muscle is classified into 2 types, slow oxidative or fast glycolytic muscle. For further characterization, we investigated the capillary architecture in slow and fast muscles. The rat soleus and extensor digitorum longus (EDL) muscles were used as representatives of slow and fast muscles, respectively. To investigate capillary density, sections of both types of muscle were stained with alkaline phosphatase;the soleus muscle showed more intense reactivity, indicating that it had a denser capillary structure than the EDL muscle. We then injected fluorescent contrast medium into samples of both muscle types for light and confocal-laser microscopic evaluation. The capillary density and capillary-to-fiber ratio were significantly higher, and the course of the capillaries was more tortuous, in the soleus muscle than in the EDL muscle. Capillary coursed more tortuously in the soleus than in the EDL muscle. Succinate dehydrogenase (SDH) activity, an indicator of mitochondrial oxidative capacity, and vascular endothelial growth factor (VEGF) expression were also significantly higher in the soleus muscle. Thus, we conclude that slow oxidative muscle possess a rich capillary structure to provide demanded oxygen, and VEGF might be involved in the formation and/or maintenance of this highly capillarized architecture.</p

    Architecture of the Subendothelial Elastic Fibers of Small Blood Vessels and Variations in Vascular Type and Size

    Get PDF
    Most blood vessels contain elastin that provides the vessels with the resilience and flexibility necessary to control hemodynamics. Pathophysiological hemodynamic changes affect the remodeling of elastic components, but little is known about their structural properties. The present study was designed to elucidate, in detail, the three-dimensional (3D) architecture of delicate elastic fibers in small vessels, and to reveal their architectural pattern in a rat model. The fine vascular elastic components were observed by a newly developed scanning electron microscopy technique using a formic acid digestion with vascular casts. This method successfully visualized the 3D architecture of elastic fibers in small blood vessels, even arterioles and venules. The subendothelial elastic fibers in such small vessels assemble into a sheet of meshwork running longitudinally, while larger vessels have a higher density of mesh and thicker mesh fibers. The quantitative analysis revealed that arterioles had a wider range of mesh density than venules; the ratio of density to vessel size was higher than that in venules. The new method was useful for evaluating the subendothelial elastic fibers of small vessels and for demonstrating differences in the architecture of different types of vessels

    Differential Response of Heat-Shock-Induced p38 MAPK and JNK Activity in PC12 Mutant and PC12 Parental Cells for Differentiation and Apoptosis

    Get PDF
    Among the 3 mitogen-activated protein kinases -- ERK, p38 MAPK and JNK -- JNK has been suggested to participate in apoptosis, whereas p38 MAPK is thought to be part of the differentiation response. There are many common inducers of JNK and p38 MAPK, but the mechanisms underlying the differential response to apoptosis and differentiation are poorly understood. We found that heatshock activated p38 MAPK at 3min after exposure to a temperature of 44 in stress-hypersensitive PC12m3 mutant cells, while it activated JNK at 20min after the same heat treatment. However, heat shock activated p38 MAPK 5min after heat treatment and JNK 10min after heat treatment in PC12 parental cells. The extent of phosphorylation of p38 MAPK induced by heat shock in PC12m3 cells was significantly greater than that in PC12 parental cells, and a high level of heat-shock-induced neurite outgrowth was observed only in PC12m3 cells. On the other hand, heat-shock-induced JNK activation appeared more quickly and apoptosis started earlier in PC12 parental cells. These findings indicate that short stress induces p38 MAPK and longer stress induces JNK, and that the response of these kinases to heat shock differs depending on cell type.</p

    Mechanical strain attenuates cytokine-induced ADAMTS9 expression via transient receptor potential vanilloid type 1

    Get PDF
    The synovial fluids of patients with osteoarthritis (OA) contain elevated levels of inflammatory cytokines, which induce the expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) and of the matrix metalloproteinase (MMP) in chondrocytes. Mechanical strain has varying effects on organisms depending on the strength, cycle, and duration of the stressor; however, it is unclear under inflammatory stimulation how mechanical strain act on. Here, we show that mechanical strain attenuates inflammatory cytokine-induced expression of matrix-degrading enzymes. Cyclic tensile strain (CTS), as a mechanical stressor, attenuated interleukin (IL)-1β and tumor necrosis factor (TNF)-α-induced mRNA expression of ADAMTS4, ADAMTS9, and MMP-13 in normal chondrocytes (NHAC-kn) and in a chondrocytic cell line (OUMS-27). This effect was abolished by treating cells with mechano-gated channel inhibitors, such as gadolinium, transient receptor potential (TRP) family inhibitor, ruthenium red, and with pharmacological and small interfering RNA-mediated TRPV1 inhibition. Furthermore, nuclear factor κB (NF-κB) translocation from the cytoplasm to the nucleus resulting from cytokine stimulation was also abolished by CTS. These findings suggest that mechanosensors such as the TRPV protein are potential therapeutic targets in treating OA
    corecore