12 research outputs found

    Vortex structure in d-density wave scenario of pseudogap

    Full text link
    We investigate the vortex structure assuming the d-density wave scenario of the pseudogap. We discuss the profiles of the order parameters in the vicinity of the vortex, effective vortex charge and the local density of states. We find a pronounced modification of these quantities when compared to a purely superconducting case. Results have been obtained for a clean system as well as in the presence of a nonmagnetic impurity. We show that the competition between superconductivity and the density wave may explain some experimental data recently obtained for high-temperature superconductors. In particular, we show that the d-density wave scenario explains the asymmetry of the gap observed in the vicinity of the vortex core.Comment: 8 pages, 10 figure

    Measurement of the π\pi^- decay width of Λ5^5_\LambdaHe

    Full text link
    We have precisely measured Λpπ\Lambda \to p\pi^- decay width of \5LHe and demonstrated significantly larger α\alpha -Λ\Lambda overlap than expected from the central repulsion α\alpha-Λ\Lambda potential, which is derived from YNG \Lambda$-nucleon interaction.Comment: 4 pages, 3 figure

    Nuclear Magnetic Resonance and Magnetization Studies of the Ferromagnetic Ordering Temperature Suppression in Ru Deficient SrRuO3

    Full text link
    The synthesis of SrRuO3 under high-pressure oxygen produces a nonstoichiometric form with randomly distributed vacancies on the Ru-sites, along with a significantly reduced ferromagnetic ordering temperature. In order to gain additional insight into the suppression of the ferromagnetism, local studies utilizing 99,101 Ru zero-field spin-echo NMR, and Ru K-edge XAFS, along with complimentary magnetization and x-ray diffraction measurements, have been carried out on samples of SrRuO3 annealed at both ("ambient") atmospheric pressure and "high-pressure" oxygen (600 atm). Consistent with previous work, the NMR spectrum for "ambient" SrRuO3 consists of two well-defined peaks at 64.4 MHz and 72.2 MHz corresponding to the 99Ru and 101Ru isotopes, respectively, and a hyperfine field of 329 kG. Although the magnetization measurements show a lower ferromagnetic ordering temperature for the "high-pressure" oxygen sample (90 K compared to 160 K for the "ambient" sample), the NMR spectrum shows no significant shift in the two peak frequencies. However, the two peaks exhibit considerable broadening, along with structure on both the low and high frequency sides which is believed to be quadrupolar in origin. Analysis of the Ru K-edge XAFS reveals more disorder in the Ru-O bond for the "high-pressure" oxygen sample compared to the "ambient" sample. Furthermore, XANES of Ru K-edge analysis indicates no difference in the valence of Ru between the two samples. The magnetic behavior indicates the existence of some vacancies on the Ru sites for the "high-pressure" oxygen sample.Comment: Proceedings of the 3rd Polish-US Workshop on Magnetism and Superconductivity of Advanced Materials, July 14-19, 2002, Ladek Zdroj (Poland), to appear in Physica

    Regulation of Nitrogen Fixation and Ammonium Assimilation in Associative and Endophytic Nitrogen Fixing Bacteria

    No full text

    32V - 89C8

    No full text
    corecore