7 research outputs found
High sugar intake exacerbates cardiac reperfusion injury in perinatal taurine depleted adult rats
Perinatal taurine depletion and high sugar diets blunted baroreflex function and heightens sympathetic nerve activity in adult rats. Cardiac ischemia/reperfusion also produces these disorders and taurine treatment appears to improve these effects. This study tests the hypothesis that perinatal taurine exposure predisposes recovery from reperfusion injury in rats on either a basal or high sugar diet. Female Sprague-Dawley rats were fed normal rat chow with 3% beta-alanine (taurine depletion, TD), 3% taurine (taurine supplementation, TS) or water alone (control, C) from conception to weaning. Male offspring were fed normal rat chow and water containing 5% glucose (G) or water alone (W) throughout the experiment. At 7-8 weeks of age, all rats were anesthetized and their trachea clamped until cardiac arrest occurred and mean arterial pressure fell below 60 mm Hg. The clamp was immediately released and cardiopulmonary resuscitation was performed with cardiac function returning within 4 min. Twenty-four hours later, arterial pressure, heart rate, and baroreflex function were measured in conscious and one day later in anesthetized conditions. Basic blood chemistry and circulating markers of cardiac injury were also measured. Baroreflex sensitivity was depressed moderately in CG and TDW, and severely in TDG. TSW displayed increased baroreflex and high sugar intake returned it to CW. Sympathetic nerve activity increased and parasympathetic decreased in TDW but not TSW and these effects were exacerbated sharply in TDG and slightly in TSG. Arterial pressure and heart rate increased in all groups but to a lesser degree in TDG. Plasma aspartate aminotransferase increased in all groups except TSW, but the increase was nearly 3X greater in TDG vs. any other group. Creatine kinase-MB increased in all groups except TSG and was far greater in TD than other groups. Troponin-T and brain natriuretic peptide were greatly increased in TDG compared to all other groups. Thus, perinatal taurine depletion increases injury from cardiac ischemia/reperfusion, and in adult rats on a high sugar diet, these effects are greatly exacerbated
Critical Functions of Histone Deacetylases (HDACs) in Modulating Inflammation Associated with Cardiovascular Diseases
Histone deacetylases (HDACs) are a superfamily of enzymes that catalyze the removal of acetyl functional groups from lysine residues of histone and non-histone proteins. There are 18 mammalian HDACs, which are classified into four classes based on the primary homology with yeast HDACs. Among these groups, Class I and II HDACs play a major role in lysine deacetylation of the N-terminal histone tails. In mammals, HDACs play a pivotal role in the regulation of gene transcription, cell growth, survival, and proliferation. HDACs regulate the expression of inflammatory genes, as evidenced by the potent anti-inflammatory activity of pan-HDAC inhibitors, which were implicated in several pathophysiologic states in the inflammation process. However, it is unclear how each of the 18 HDAC proteins specifically contributes to the inflammatory gene expression. It is firmly established that inflammation and its inability to converge are central mechanisms in the pathogenesis of several cardiovascular diseases (CVDs). Emerging evidence supports the hypothesis that several different pro-inflammatory cytokines regulated by HDACs are associated with various CVDs. Based on this hypothesis, the potential for the treatment of CVDs with HDAC inhibitors has recently begun to attract attention. In this review, we will briefly discuss (1) pathophysiology of inflammation in cardiovascular disease, (2) the function of HDACs in the regulation of atherosclerosis and cardiovascular diseases, and (3) the possible therapeutic implications of HDAC inhibitors in cardiovascular diseases. Recent studies reveal that histone deacetylase contributes critically to mediating the pathophysiology of inflammation in cardiovascular disease. HDACs are also recognized as one of the major mechanisms in the regulation of inflammation and cardiovascular function. HDACs show promise in developing potential therapeutic implications of HDAC inhibitors in cardiovascular and inflammatory diseases
Inhibition of integrin alpha v/beta 5 mitigates the protective effect induced by irisin in hemorrhage
Introduction: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvβ5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvβ5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvβ5 contributes to the effects of irisin during the hemorrhagic response. Methods: Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35–45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5 μg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvβ5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin β5 with nanoparticle delivery of integrin β5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. Results: Hemorrhage induced reduction of integrin αvβ5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin β5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin β5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvβ5, or knockdown of integrin β5. Conclusion: Integrin αvβ5 plays an important role for irisin in modulating the protective effect during hemorrhage