3 research outputs found

    Optimal Placement of Distributed Photovoltaic Systems and Electric Vehicle Charging Stations Using Metaheuristic Optimization Techniques

    No full text
    In this study, the concept of symmetry is introduced by finding the optimal state of a power system. An electric vehicle type load is present, where the supply stores’ electrical energy causes an imbalance in the system. The optimal conditions are related by adjusting the voltage of the bus location. The key variables are the load voltage deviation (LVD), the variation of the load and the power, and the sizing of the distributed photovoltaic (DPV), which are added to the system for power stability. Here, a method to optimize the fast-charging stations (FCSs) and DPV is presented using an optimization technique comparison. The system tests the distribution line according to the bus grouping in the IEEE 33 bus system. This research presents a hypothesis to solve the problem of the voltage level in the system using metaheuristic algorithms: the cuckoo search algorithm (CSA), genetic algorithm (GA), and simulated annealing algorithm (SAA) are used to determine the optimal position for DPV deployment in the grid with the FCSs. The LVD, computation time, and total power loss for each iteration are compared. The voltage dependence power flow is applied using the backward/forward sweep method (BFS). The LVD is applied to define the objective function of the optimization techniques. The simulation results show that the SAA showed the lowest mean computation time, followed by the GA and the CSA. A possible location of the DPV is bus no. 6 for FCSs with high penetration levels, and the best FCS locations can be found with the GA, with the best percentage of best hit counter on buses no. 2, 3, 13, 14, 28, 15, and 27. Therefore, FCSs can be managed and handled in optimal conditions, and this work supports future FCS expansion

    Optimal sizing and location of the charging station for plug-in electric vehicles using the particle swarm optimization technique

    No full text
    This paper had presented the optimal battery charging station for Plug-in Electric Vehicles (PEVs) in the electrical power system, by using the Particle Swarm Optimization technique (PSO). The PEVs are represented using the Voltage Source Converter (VSC) as the group of PEVs that were installed in the charging station. The electrical power system was analyzed in a steady state, by using the IEEE 30 bus test system. The installed PEVs site in the power system aimed to minimize system power loss. The results were shown that the optimal site is bus N0.30. The total power loss and percentage of power loss reduction were 0.0994 p.u. and 6.4%, respectively

    Optimal Placement of Distributed Photovoltaic Systems and Electric Vehicle Charging Stations Using Metaheuristic Optimization Techniques

    No full text
    In this study, the concept of symmetry is introduced by finding the optimal state of a power system. An electric vehicle type load is present, where the supply stores’ electrical energy causes an imbalance in the system. The optimal conditions are related by adjusting the voltage of the bus location. The key variables are the load voltage deviation (LVD), the variation of the load and the power, and the sizing of the distributed photovoltaic (DPV), which are added to the system for power stability. Here, a method to optimize the fast-charging stations (FCSs) and DPV is presented using an optimization technique comparison. The system tests the distribution line according to the bus grouping in the IEEE 33 bus system. This research presents a hypothesis to solve the problem of the voltage level in the system using metaheuristic algorithms: the cuckoo search algorithm (CSA), genetic algorithm (GA), and simulated annealing algorithm (SAA) are used to determine the optimal position for DPV deployment in the grid with the FCSs. The LVD, computation time, and total power loss for each iteration are compared. The voltage dependence power flow is applied using the backward/forward sweep method (BFS). The LVD is applied to define the objective function of the optimization techniques. The simulation results show that the SAA showed the lowest mean computation time, followed by the GA and the CSA. A possible location of the DPV is bus no. 6 for FCSs with high penetration levels, and the best FCS locations can be found with the GA, with the best percentage of best hit counter on buses no. 2, 3, 13, 14, 28, 15, and 27. Therefore, FCSs can be managed and handled in optimal conditions, and this work supports future FCS expansion
    corecore