5 research outputs found
A Homolog of FHM2 Is Involved in Modulation of Excitatory Neurotransmission by Serotonin in C. elegans
The C. elegans eat-6 gene encodes a Na+, K+-ATPase α subunit and is a homolog of the familial hemiplegic migraine candidate gene FHM2. Migraine is the most common neurological disorder linked to serotonergic dysfunction. We sought to study the pathophysiological mechanisms of migraine and their relation to serotonin (5-HT) signaling using C. elegans as a genetic model. In C. elegans, exogenous 5-HT inhibits paralysis induced by the acetylcholinesterase inhibitor aldicarb. We found that the eat-6(ad467) mutation or RNAi of eat-6 increases aldicarb sensitivity and causes complete resistance to 5-HT treatment, indicating that EAT-6 is a component of the pathway that couples 5-HT signaling and ACh neurotransmission. While a postsynaptic role of EAT-6 at the bodywall NMJs has been well established, we found that EAT-6 may in addition regulate presynaptic ACh neurotransmission. We show that eat-6 is expressed in ventral cord ACh motor neurons, and that cell-specific RNAi of eat-6 in the ACh neurons leads to hypersensitivity to aldicarb. Electron microscopy showed an increased number of synaptic vesicles in the ACh neurons in the eat-6(ad467) mutant. Genetic analyses suggest that EAT-6 interacts with EGL-30 Gαq, EGL-8 phospholipase C and SLO-1 BK channel signaling to modulate ACh neurotransmission and that either reduced or excessive EAT-6 function may lead to increased ACh neurotransmission. Study of the interaction between eat-6 and 5-HT receptors revealed both stimulatory and inhibitory 5-HT inputs to the NMJs. We show that the inhibitory and stimulatory 5-HT signals arise from distinct 5-HT neurons. The role of eat-6 in modulation of excitatory neurotransmission by 5-HT may provide a genetic explanation for the therapeutic effects of the drugs targeting 5-HT receptors in the treatment of migraine patients
A Genetic Survey of Fluoxetine Action on Synaptic Transmission in Caenorhabditis elegans
Fluoxetine is one of the most commonly prescribed medications for many behavioral and neurological disorders. Fluoxetine acts primarily as an inhibitor of the serotonin reuptake transporter (SERT) to block the removal of serotonin from the synaptic cleft, thereby enhancing serotonin signals. While the effects of fluoxetine on behavior are firmly established, debate is ongoing whether inhibition of serotonin reuptake is a sufficient explanation for its therapeutic action. Here, we provide evidence of two additional aspects of fluoxetine action through genetic analyses in Caenorhabditis elegans. We show that fluoxetine treatment and null mutation in the sole SERT gene mod-5 eliminate serotonin in specific neurons. These neurons do not synthesize serotonin but import extracellular serotonin via MOD-5/SERT. Furthermore, we show that fluoxetine acts independently of MOD-5/SERT to regulate discrete properties of acetylcholine (Ach), gamma-aminobutyric acid (GABA), and glutamate neurotransmission in the locomotory circuit. We identified that two G-protein–coupled 5-HT receptors, SER-7 and SER-5, antagonistically regulate the effects of fluoxetine and that fluoxetine binds to SER-7. Epistatic analyses suggest that SER-7 and SER-5 act upstream of AMPA receptor GLR-1 signaling. Our work provides genetic evidence that fluoxetine may influence neuronal functions and behavior by directly targeting serotonin receptors