2 research outputs found

    Outcomes of Redo Transcatheter Aortic Valve Replacement According to the Initial and Subsequent Valve Type

    No full text
    Background: As transcatheter aortic valve (TAV) replacement is increasingly used in patients with longer life expectancy, a sizable proportion will require redo TAV replacement (TAVR). The unique configuration of balloon-expandable TAV (bTAV) vs a self-expanding TAV (sTAV) potentially affects TAV-in-TAV outcome. Objectives: The purpose of this study was to better inform prosthesis selection, TAV-in-TAV outcomes were assessed according to the type of initial and subsequent TAV. Methods: Patients from the Redo-TAVR registry were analyzed using propensity weighting according to their initial valve type (bTAV [n = 115] vs sTAV [n = 106]) and subsequent valve type (bTAV [n = 130] vs sTAV [n = 91]). Results: Patients with failed bTAVs presented later (vs sTAV) (4.9 ± 2.1 years vs 3.7 ± 2.3 years; P < 0.001), with smaller effective orifice area (1.0 ± 0.7 cm2 vs 1.3 ± 0.8 cm2; P = 0.018) and less frequent dominant regurgitation (16.2% vs 47.3%; P < 0.001). Mortality at 30 days was 2.3% (TAV-in-bTAV) vs 0% (TAV-in-sTAV) (P = 0.499) and 1.7% (bTAV-in-TAV) vs 1.0% (sTAV-in-TAV) (P = 0.612); procedural safety was 72.6% (TAV-in-bTAV) vs 71.2% (TAV-in-sTAV) (P = 0.817) and 73.2% (bTAV-in-TAV) vs 76.5% (sTAV-in-TAV) (P = 0.590). Device success was similar according to initial valve type but higher with subsequent sTAV vs bTAV (77.2% vs 64.3%; P = 0.045), primarily because of lower residual gradients (10.3 mm Hg [8.9-11.7 mm Hg] vs 15.2 mm Hg [13.2-17.1 mm Hg]; P < 0.001). Residual regurgitation (moderate or greater) was similar after bTAV-in-TAV and sTAV-in-TAV (5.7%) and nominally higher after TAV-in-bTAV (9.1%) vs TAV-in-sTAV (4.4%) (P = 0.176). Conclusions: In selected patients, no association was observed between TAV type and redo TAVR safety or mortality, yet subsequent sTAV was associated with higher device success because of lower redo gradients. These findings are preliminary, and more data are needed to guide valve choice for redo TAVR

    Repeat Transcatheter Aortic Valve Replacement for Transcatheter Prosthesis Dysfunction.

    No full text
    BACKGROUND Transcatheter aortic valve replacement (TAVR) use is increasing in patients with longer life expectancy, yet robust data on the durability of transcatheter heart valves (THVs) are limited. Redo-TAVR may play a key strategy in treating patients in whom THVs fail. OBJECTIVES The authors sought to examine outcomes following redo-TAVR. METHODS The Redo-TAVR registry collected data on consecutive patients who underwent redo-TAVR at 37 centers. Patients were classified as probable TAVR failure or probable THV failure if they presented within or beyond 1 year of their index TAVR, respectively. RESULTS Among 63,876 TAVR procedures, 212 consecutive redo-TAVR procedures were identified (0.33%): 74 within and 138 beyond 1 year of the initial procedure. For these 2 groups, TAVR-to-redo-TAVR time was 68 (38 to 154) days and 5 (3 to 6) years. The indication for redo-TAVR was THV stenosis in 12 (16.2%) and 51 (37.0%) (p = 0.002) and regurgitation or combined stenosis-regurgitation in 62 (83.8%) and 86 (62.3%) (p = 0.028), respectively. Device success using VARC-2 criteria was achieved in 180 patients (85.1%); most failures were attributable to high residual gradients (14.1%) or regurgitation (8.9%). At 30-day and 1-year follow-up, residual gradients were 12.6 ± 7.5 mm Hg and 12.9 ± 9.0 mm Hg; valve area 1.63 ± 0.61 cm2 and 1.51 ± 0.57 cm2; and regurgitation ≤mild in 91% and 91%, respectively. Peri-procedural complication rates were low (3 stroke [1.4%], 7 valve malposition [3.3%], 2 coronary obstruction [0.9%], 20 new permanent pacemaker [9.6%], no mortality), and symptomatic improvement was substantial. Survival at 30 days was 94.6% and 98.5% (p = 0.101) and 83.6% and 88.3% (p = 0.335) at 1 year for patients presenting with early and late valve dysfunction, respectively. CONCLUSIONS Redo-TAVR is a relatively safe and effective option for selected patients with valve dysfunction after TAVR. These results are important for applicability of TAVR in patients with long life expectancy in whom THV durability may be a concern
    corecore