7 research outputs found

    A functional genomics approach in Tanzanian population identifies distinct genetic regulators of cytokine production compared to European population

    Get PDF
    Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research

    Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes

    Get PDF
    Sub-Saharan Africa currently experiences an unprecedented wave of urbanization, which has important consequences for health and disease patterns. This study aimed to investigate and integrate the immune and metabolic consequences of rural or urban lifestyles and the role of nutritional changes associated with urban living. In a cohort of 323 healthy Tanzanians, urban as compared to rural living was associated with a pro-inflammatory immune phenotype, both at the transcript and protein levels. We identified different food-derived and endogenous circulating metabolites accounting for these differences. Serum from urban dwellers induced reprogramming of innate immune cells with higher tumor necrosis factor production upon microbial re-stimulation in an in vitro model of trained immunity. These data demonstrate important shifts toward an inflammatory phenotype associated with an urban lifestyle and provide new insights into the underlying dietary and metabolic factors, which may affect disease epidemiology in sub-Sahara African countries. Rapid urbanization can be associated with adverse health implications. de Mast and colleagues compare urban and rural Tanzanian populations using multi-omics and observe that urbanization is associated with an elevated but reversible inflammatory state

    Genetic and nongenetic drivers of platelet reactivity in healthy Tanzanian individuals

    Get PDF
    Background: Platelets play a key role in hemostasis, inflammation, and cardiovascular diseases. Platelet reactivity is highly variable between individuals. The drivers of this variability in populations from Sub-Saharan Africa remain largely unknown. Objectives: We aimed to investigate the nongenetic and genetic determinants of platelet reactivity in healthy adults living in a rapidly urbanizing area in Northern Tanzania. Methods: Platelet activation and reactivity were measured by platelet P-selectin expression and the binding of fibrinogen in unstimulated blood and after ex vivo stimulation with adenosine diphosphate and PAR-1 and PAR-4 ligands. We then analyzed the associations of platelet parameters with host genetic and nongenetic factors, environmental factors, plasma inflammatory markers, and plasma metabolites. Results: Only a few associations were found between platelet reactivity parameters and plasma inflammatory markers and nongenetic host and environmental factors. In contrast, untargeted plasma metabolomics revealed a large number of associations with food-derived metabolites, including phytochemicals that were previously reported to inhibit platelet reactivity. Genome-wide single-nucleotide polymorphism genotyping identified 2 novel single-nucleotide polymorphisms (rs903650 and rs4789332) that were associated with platelet reactivity at the genome-wide level (P &lt; 5 × 10−8) as well as a number of variants in the PAR4 gene (F2RL3) that were associated with PAR4-induced reactivity. Conclusion: Our study uncovered factors that determine variation in platelet reactivity in a population in East Africa that is rapidly transitioning to an urban lifestyle, including the importance of genetic ancestry and the gradual abandoning of the traditional East African diet.</p

    Desialylation of platelets induced by Von Willebrand Factor is a novel mechanism of platelet clearance in dengue

    No full text
    Thrombocytopenia and platelet dysfunction are commonly observed in patients with dengue virus (DENV) infection and may contribute to complications such as bleeding and plasma leakage. The etiology of dengue-associated thrombocytopenia is multifactorial and includes increased platelet clearance. The binding of the coagulation protein von Willebrand factor (VWF) to the platelet membrane and removal of sialic acid (desialylation) are two well-known mechanisms of platelet clearance, but whether these conditions also contribute to thrombocytopenia in dengue infection is unknown. In two observational cohort studies in Bandung and Jepara, Indonesia, we show that adult patients with dengue not only had higher plasma concentrations of plasma VWF antigen and active VWF, but that circulating platelets had also bound more VWF to their membrane. The amount of platelet-VWF binding correlated well with platelet count. Furthermore, sialic acid levels in dengue patients were significantly reduced as assessed by the binding of Sambucus nigra lectin (SNA) and Maackia amurensis lectin II (MAL-II) to platelets. Sialic acid on the platelet membrane is neuraminidase-labile, but dengue virus has no known neuraminidase activity. Indeed, no detectable activity of neuraminidase was present in plasma of dengue patients and no desialylation was found of plasma transferrin. Platelet sialylation was also not altered by in vitro exposure of platelets to DENV nonstructural protein 1 or cultured DENV. In contrast, induction of binding of VWF to glycoprotein 1b on platelets using the VWF-activating protein ristocetin resulted in the removal of platelet sialic acid by translocation of platelet neuraminidase to the platelet surface. The neuraminidase inhibitor oseltamivir reduced VWF-induced platelet desialylation. Our data demonstrate that excessive binding of VWF to platelets in dengue results in neuraminidase-mediated platelet desialylation and platelet clearance. Oseltamivir might be a novel treatment option for severe thrombocytopenia in dengue infection
    corecore