7 research outputs found
Recommended from our members
LUVMI: an innovative payload for the sampling of volatiles at the Lunar poles
The ISECG identifies one of the first exploration steps as in situ investigations of the moon or asteroids. Europe is developing payload concepts for drilling and sample analysis, a contribution to a 250kg rover as well as for sample return. To achieve these missions, ESA depends on international partnerships.
Such missions will be seldom, expensive and the drill/sample site selected will be based on observations from orbit not calibrated with ground truth data. Many of the international science community’s objectives can be met at lower cost, or the chances of mission success improved and the quality of the science increased by making use of an innovative, low mass, mobile robotic payload following the LEAG
recommendations.
LUVMI provides a smart, low mass, innovative, modular mobile payload comprising surface and subsurface sensing with an in-situ sampling technology capable of depth-resolved extraction of volatiles, combined with a volatile analyser (mass spectrometer) capable of identifying the chemical composition of the most important volatiles. This will allow LUVMI to: traverse the lunar surface prospecting for volatiles; sample subsurface up to a depth of 10 cm (with a goal of 20 cm); extract water and other loosely bound volatiles; identify the chemical species extracted; access and sample permanently shadowed regions (PSR).
The main innovation of LUVMI is to develop an in situ sampling technology capable of depth-resolved extraction of volatiles, and then to package within this tool, the analyser itself, so as to maximise transfer
efficiency and minimise sample handling and its attendant mass requirements and risk of sample alteration. By building on national, EC and ESA funded research and developments, this project will develop to TRL6 instruments that together form a smart modular mobile payload that could be flight ready in 2020.
The LUVMI sampling instrument will be tested in a highly representative environment including thermal, vacuum and regolith simulant and the integrated payload demonstrated in a representative environment
ReflektAS: lane departure prevention system based on behavioural control
As a great portion of fatal accidents is caused by road departures, numerous systems for lateral control have been developed. These systems possess different functionalities, like warning the driver if he tends to depart from the lane or adding a steering torque to reduce the necessity for small steering corrections. To overcome some disadvantages of the classical systems and to develop a system for emergency situations, the knowledge of behavioural principles was utilised. A system based on reflexes has the potential of eliciting reactions reliably and quickly. In a simulator study, the principle was examined and different adjustments of the stimulus used to elicit target behaviour were tested. Subjective and objective data were collected. Results
show that the participants trusted the system and perceived it as a valuable contribution to traffic safety.
Objective data, like steering angle and measures of lateral position, were analysed and three different types of elicited reactions could be identified. Reaction time, reaction strength and a number of other measures were calculated for each type of reaction. The results confirmed that the system elicits reflexive reactions with very short delays, thus showing its potential for avoiding severe accidents
Individualisierte Routenplanung am Beispiel älterer Fahrer
In modernen Fahrzeugen übernehmen Fahrerassistenzsysteme eine Minimierung der Belastung des Fahrers bei seiner Aufgabe der Fahrzeugführung. Aufgrund des steigenden Verkehrsaufkommens ermöglichen Systeme wie ACC und HC eine Entlastung des Fahrers was direkt in eine erlebte Komfortsteigerung mündet. Gewöhnliche Navigationssysteme entlasten den Fahrer bei kognitiven Aufgaben der Streckenführung und der Zeitplanung und erhöhen ebenfalls den Komfort beim Fahren. Dazu werden bislang Algorithmen verwendet, welche eine Route über kürzeste oder schnellste Streckenverbindung in Zusammenhang mit dem möglichen Ausschluss einiger Straßen berechnen. Die realen Fahrtintentionen lassen sich jedoch nicht durch die bisherigen Möglichkeiten abdecken. Eine von Menschen durchgeführte Navigation bezieht noch wesentlich mehr Aspekte ein, welche nicht nur interindividuell, sondern auch intraindividuell variieren. Der Fahrtzweck, die Begleitung oder auch das zu bewegende Fahrzeug spielen eine große Rolle bei der menschlichen Routenwahl. Um eine Fahrtroute automatisiert an die Präferenzen und Intentionen des Fahrers anzupassen, ist die Erhebung komplexer Informationen über den Fahrer notwendig, beispielsweise über Vorlieben oder Abneigungen gegenüber bestimmten Strecken. Die 2004 am Institut für Verkehrsführung und Fahrzeugsteuerung durchgeführten Untersuchungen, in Bezug auf unterschiedliche Fahrertypen oder spezielle Fahrsituationen, bildet die Basis für die weitere Forschung.
Die derzeitige Studie befasst sich mit der Fragestellung des Einflusses von streckenseitiger Infrastruktur auf die Belastung des Fahrers. Die mit dem Forschungsfahrzeug ViewCar durchgeführten Fahrten im realen Verkehr bringen Aufschluss über Hypothesen der des Belastungspotentials älterer Fahrer beim Fahren. Die Untersuchungsstrecke beinhaltete Bereich anbaufreier Fernstraßen ebenfalls wie angebaute Straßen unterschiedlichster Verbindungsfunktionen im Braunschweiger Stadtgebiet. Die Probanden gruppierten sich in eine Gruppe älterer Fahrer und einer Referenzgruppe. Zur Auswertung wurden sowohl physiologische Daten erhoben, wie auch CAN-Bus und Ortungsdaten. Über mehrere Fragebögen wurden ebenfalls subjektive Daten erhoben.
Als Ergebnis konnten Hypothesen über das Stresspotential von Infrastruktur auf bestimmte Fahrer aus der Literatur und aus anderen Untersuchungen sowohl bestätigt, als auch abgelehnt werden
Recommended from our members
LUVMI – Volatile Extraction and Measurements in Lunar Polar Regions
The low inclination of the lunar orbit allows areas in high latitudes to remain in eternal darkness. These Permanently Shadowed Regions (PSR) are never illuminated by heating sunlight and are some of the coldest places in the Solar System which are thought to contain vast deposits of water and other volatiles. In‐situ measurements are required as a definite proof of the existence of water and other volatiles in and around a PSR.
The LUnar Volatiles Mobile Instrumentation (LUVMI) is an autonomous, low mass, modular rover consisting of surface and subsurface sensing instruments with an in‐situ sampling and analysis technology capable of depth resolved volatile extraction and characterisation. With a total mass of less than 20 kg LUVMI is intended as an additional mobile payload for a lunar polar lander mission that will add the capability of allowing access to a PSR. Volatile extraction from the lunar regolith will be carried out by the Volatiles Sampler (VS), which will sample the subsurface up to a depth of 10 cm, extract water and other loosely bound volatiles through heating. The design of the VS provides efficient volatile sample transfer and minimizes sample handling requirements. Evolved volatile characterisation will be performed by the Volatiles Analyser (VA) which is a miniature mass spectrometer based on the Ptolemy mass spectrometer instrument on‐board Philae, the ESA Rosetta Lander.
We will discuss the LUVMI rover concept, the current concept of operations and the design of the mass spectrometer extraction systems
Recommended from our members
LUVMI Rover to Characterise Volatile Content in Lunar Polar Regions
The low inclination of the lunar orbit allows areas in high and low latitudes to remain in eternal darkness. These Permanently Shadowed Regions (PSR) are never illuminated by sunlight and are some of the coldest places in the Solar System and could contain vast deposits of water and other volatiles. In-situ measurements are required as a ‘ground-truth’ measurement to determine the existence volatiles in these regions.
The LUnar Volatiles Mobile Instrumentation (LUVMI) is an autonomous, low mass, modular rover concept consisting of surface and subsurface sensing instruments with an in-situ sampling and analysis technology capable of depth resolved volatile extraction and characterisation. Volatile extraction from the lunar regolith will be carried out by the Volatiles Sampler (VS), which will sample the subsurface up to a depth of 20 cm, extract water and other loosely bound volatiles through heating. The design of the VS provides efficient volatile sample transfer and minimizes sample handling requirements. Evolved volatile characterisation will be performed by the Volatiles Analyser (VA) which is a miniature ion trap mass spectrometer based on the Ptolemy mass spectrometer instrument on-board Philae, the ESA Rosetta Lander. LUVMI-X (eXtended) will add the capability of allowing direct access to a PSR(s) via a miniature instrumented low velocity projectile that will be launched from the rover platform into areas of interest that are inaccessible to the rover.
We will discuss the LUVMI test campaign conducted in December 2018, the current LUVMI-X configuration, the design of the mass spectrometer extraction systems and recent laboratory results obtained with volatile doped regolith simulant
LUVMI: A concept of low footprint lunar volatiles mobile instrumentation
The International Space Exploration Coordination Group (ISECG) identifies one of the first exploration steps as in situ investigations of the Moon or asteroids. Europe is developing payload concepts for drilling and sample analysis, a contribution to a 250kg rover as well as for sample return. To achieve these missions, ESA depends on international partnerships. Such missions will be seldom, expensive and the drill/sample site selected will be based on observations from orbit not calibrated with ground truth data. Many of the international science community’s objectives can be met at lower cost, or the chances of mission success improved and the quality of the science increased by making use of an innovative, low mass, mobile robotic payload following the LEAG recommendations. As a main objective LUVMI is designed specifically for operations at the South Pole of the Moon with a payload accommodated by a novel lightweight mobile platform (rover) with a range of several kilometers. Over the 2 years duration of the project, the scientific instruments payload will be developed and validated up to TRL 6. LUVMI targets being ready for flight in 2020 on an ESA mission partially supported by private funding