7,819 research outputs found
Leptoquark patterns unifying neutrino masses, flavor anomalies, and the diphoton excess
Vector leptoquarks provide an elegant solution to a series of anomalies and
at the same time generate naturally light neutrino masses through their mixing
with the standard model Higgs boson. We present a simple Froggatt-Nielsen model
to accommodate the B physics anomalies and , neutrino masses, and
the GeV diphoton excess in one cohesive framework adding only two vector
leptoquarks and two singlet scalar fields to the standard model field content.Comment: 12 pages, 10 figures; final version published in PR
Broad-band Modeling of GRB Afterglows
Observations of GRB afterglows ranging from radio to X-ray frequencies
generate large data sets. Careful analysis of these broad-band data can give us
insight into the nature of the GRB progenitor population by yielding such
information like the total energy of the burst, the geometry of the fireball
and the type of environment into which the GRB explodes. We illustrate, by
example, how global, self-consistent fits are a robust approach for
characterizing the afterglow emission. This approach allows a relatively simple
comparison of different models and a way to determine the strengths and
weaknesses of these models, since all are treated self-consistently. Here we
quantify the main differences between the broad-band, self-consistent approach
and the traditional approach, using GRB000301C and GRB970508 as test cases.Comment: Appears in "Gamma-Ray Bursts in the Afterglow Era" proceedings of the
Roma 2000 GRB Workshop; 3 pages; 2 figure
The Angular Size and Proper Motion of the Afterglow of GRB 030329
The bright, nearby (z=0.1685) gamma-ray burst of 29 March 2003 has presented
us with the first opportunity to directly image the expansion of a GRB. This
burst reached flux density levels at centimeter wavelengths more than 50 times
brighter than any previously studied event. Here we present the results of a
VLBI campaign using the VLBA, VLA, Green Bank, Effelsberg, Arecibo, and
Westerbork telescopes that resolves the radio afterglow of GRB 030329 and
constrains its rate of expansion. The size of the afterglow is found to be
\~0.07 mas (0.2 pc) 25 days after the burst, and 0.17 mas (0.5 pc) 83 days
after the burst, indicating an average velocity of 3-5 c. This expansion is
consistent with expectations of the standard fireball model. We measure the
projected proper motion of GRB 030329 in the sky to <0.3 mas in the 80 days
following the burst. In observations taken 52 days after the burst we detect an
additional compact component at a distance from the main component of 0.28 +/-
0.05 mas (0.80 pc). The presence of this component is not expected from the
standard model.Comment: 12 pages including 2 figures, LaTeX. Accepted to ApJ Letters on May
14, 200
A Radio Flare from GRB 020405: Evidence for a Uniform Medium Around a Massive Stellar Progenitor
We present radio observations of GRB 020405 starting 1.2 days after the
burst, which reveal a rapidly-fading ``radio flare''. Based on its temporal and
spectral properties, we interpret the radio flare as emission from the reverse
shock. This scenario rules out a circumburst medium with a radial density
profile \rho ~ r^{-2} expected around a mass-losing massive star, since in that
case the reverse shock emission decays on the timescale of the burst duration
t~100 s. Using published optical and X-ray data, along with the radio data
presented here, we further show that a self-consistent model requires
collimated ejecta with an opening angle of 6 degrees (t_j~0.95 days). As a
consequence of the early jet break, the late-time (t>10 days) emission measured
with the Hubble Space Telescope significantly deviates from an extrapolation of
the early, ground-based data. This, along with an unusually red spectrum, F_\nu
\~ \nu^{-3.9}, strengthens the case for a supernova that exploded at about the
same time as GRB 020405, thus pointing to a massive stellar progenitor for this
burst. This is the first clear association of a massive progenitor with a
uniform medium, indicating that a \rho ~ r^{-2} profile is not a required
signature, and in fact may not be present on the lengthscales probed by the
afterglow in the majority of bursts.Comment: Submitted to ApJ; 14 pages, 2 tables, 3 figure
Expected characteristics of the subclass of Supernova Gamma-ray Bursts (S-GRBs)
The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425
and supernova (SN) 1998bw has prompted speculation that there exists a class of
GRBs produced by SNe (``S-GRBs''). Robust arguments for the existence of a
relativistic shock have been presented on the basis of radio observations. A
physical model based on the radio observations lead us to propose the following
characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and
implied brightness temperature near or below the inverse Compton limit, 2) high
expansion velocity of the optical photosphere as derived from lines widths and
energy release larger than usual, 3) no long-lived X-ray afterglow, and 4) a
single pulse (SP) GRB profile. Radio studies of previous SNe show that only
type Ib and Ic potentially satisfy the first condition. Accordingly we have
investigated proposed associations of GRBs and SNe finding no convincing
evidence (mainly to paucity of data) to confirm any single connection of a SN
with a GRB. If there is a more constraining physical basis for the burst
time-history of S-GRBs beyond that of the SP requirement, we suggest the 1% of
light curves in the BATSE catalogue similar to that of GRB 980425 may
constitute the subclass. Future optical follow-up of bursts with similar
profiles should confirm if such GRBs originate from some fraction of SN type
Ib/Ic.Comment: 11 pages of LaTeX with 1 figure. Submitted to the Astrophysical
Journal Letter
Probing the Intergalactic Medium with Fast Radio Bursts
The recently discovered fast radio bursts (FRBs), presumably of
extra-galactic origin, have the potential to become a powerful probe of the
intergalactic medium (IGM). We point out a few such potential applications. We
provide expressions for the dispersion measure and rotation measure as a
function of redshift, and we discuss the sensitivity of these measures to the
HeII reionization and the IGM magnetic field. Finally we calculate the
microlensing effect from an isolate, extragalctic stellar-mass compact object
on the FRB spectrum. The time delays between the two lensing images will induce
constructive and destructive interference, leaving a specific imprint on the
spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs
is expected to make these applications feasible.Comment: 4 pages, 1 figure; Typos for the variable x in Eq.6 corrected;
Published in ApJ; Originally the Appendix E of arXiv:1402.4766; Separated
from the main paper upon the referee's reques
The Host Galaxy of GRB980703 at Radio Wavelengths - a Nuclear Starburst in a ULIRG
We present radio observations of GRB980703 at 1.43, 4.86, and 8.46 GHz for
the period of 350 to 1000 days after the burst. These radio data clearly
indicate that there is a persistent source at the position of GRB980703 with a
flux density of approximately 70 Jy at 1.43 GHz, and a spectral index,
, where . We show that emission
from the afterglow of GRB980703 is expected to be one to two orders of
magnitude fainter, and therefore cannot account for these observations. We
interpret this persistent emission as coming from the host galaxy --- the first
example of a gamma-ray burst (GRB) host detection at radio wavelengths. We show
that emission from an AGN is unlikely, and find that it can be explained as a
result of a star-formation rate (SFR) of massive stars (M>5M) of 90
M/yr, which gives a total SFR of M/yr. Using the
correlation between the radio and far-IR (FIR) luminosities of star-forming
galaxies, we find that the host of GRB980703 is at the faint end of the class
of Ultra Luminous Infrared Galaxies (ULIRGs), with L_{FIR}\sim few\times
10^{12} L. From the radio measurements of the offset between the burst
and the host, and the size of the host, we conclude that GRB980703 occurred
near the center of the galaxy in a region of maximum star formation. A
comparison of the properties of this galaxy with radio and optical surveys at a
similar redshift () reveals that the host of GRB980703 is an
average star-forming galaxy. This result has significant implications for the
potential use of a GRB-selected galaxy sample for the study of galaxies and the
IGM at high redshifts.Comment: Submitted to Ap
- …