11,620 research outputs found

    PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor

    Get PDF
    There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi

    SN1998bw: The Case for a Relativistic Shock

    Get PDF
    SN1998bw shot to fame by claims of association with GRB980425. Independent of its presumed association with a GRB, this SN is unusual in its radio properties. A simple interpretation of the unusually bright radio emission leads us to the conclusion that there are two shocks in this SN: a slow moving shock containing most of the ejecta and a relativistic shock (Gamma=2) which is responsible for the radio emission. This is the first evidence for the existence of relativistic shocks in supernovae. It is quite plausible that this shock may produce high energy emission (at early times and by inverse Compton scattering). As with other supernovae, we expect radio emission at much later times powered primarily by the slow moving ejecta. This expectation has motivated us to continue monitoring this unusual SN.Comment: A&A (in press), Rome GRB Symposium, Nov. 199

    A Radio Flare from GRB 020405: Evidence for a Uniform Medium Around a Massive Stellar Progenitor

    Get PDF
    We present radio observations of GRB 020405 starting 1.2 days after the burst, which reveal a rapidly-fading ``radio flare''. Based on its temporal and spectral properties, we interpret the radio flare as emission from the reverse shock. This scenario rules out a circumburst medium with a radial density profile \rho ~ r^{-2} expected around a mass-losing massive star, since in that case the reverse shock emission decays on the timescale of the burst duration t~100 s. Using published optical and X-ray data, along with the radio data presented here, we further show that a self-consistent model requires collimated ejecta with an opening angle of 6 degrees (t_j~0.95 days). As a consequence of the early jet break, the late-time (t>10 days) emission measured with the Hubble Space Telescope significantly deviates from an extrapolation of the early, ground-based data. This, along with an unusually red spectrum, F_\nu \~ \nu^{-3.9}, strengthens the case for a supernova that exploded at about the same time as GRB 020405, thus pointing to a massive stellar progenitor for this burst. This is the first clear association of a massive progenitor with a uniform medium, indicating that a \rho ~ r^{-2} profile is not a required signature, and in fact may not be present on the lengthscales probed by the afterglow in the majority of bursts.Comment: Submitted to ApJ; 14 pages, 2 tables, 3 figure

    PTF 10bzf (SN 2010ah): A Broad-Line Ic Supernova Discovered by the Palomar Transient Factory

    Get PDF
    We present the discovery and follow-up observations of a broad-line Type Ic supernova (SN), PTF 10bzf (SN 2010ah), detected by the Palomar Transient Factory (PTF) on 2010 February 23. The SN distance is ≅218 Mpc, greater than GRB 980425/SN 1998bw and GRB 060218/SN 2006aj, but smaller than the other SNe firmly associated with gamma-ray bursts (GRBs). We conducted a multi-wavelength follow-up campaign with Palomar 48 inch, Palomar 60 inch, Gemini-N, Keck, Wise, Swift, the Allen Telescope Array, Combined Array for Research in Millimeter-wave Astronomy, Westerbork Synthesis Radio Telescope, and Expanded Very Large Array. Here we compare the properties of PTF 10bzf with those of SN 1998bw and other broad-line SNe. The optical luminosity and spectral properties of PTF 10bzf suggest that this SN is intermediate, in kinetic energy and amount of ^(56)Ni, between non-GRB-associated SNe like 2002ap or 1997ef, and GRB-associated SNe like 1998bw. No X-ray or radio counterpart to PTF 10bzf was detected. X-ray upper limits allow us to exclude the presence of an underlying X-ray afterglow as luminous as that of other SN-associated GRBs such as GRB 030329 or GRB 031203. Early-time radio upper limits do not show evidence for mildly relativistic ejecta. Late-time radio upper limits rule out the presence of an underlying off-axis GRB, with energy and wind density similar to the SN-associated GRB 030329 and GRB 031203. Finally, by performing a search for a GRB in the time window and at the position of PTF 10bzf, we find that no GRB in the interplanetary network catalog could be associated with this SN

    A model for a flywheel automatic assistedmanual transmission

    Get PDF
    This paper is focused on the model and dynamical analysis of a flywheel assisted transmis- sion aiming at reducing the torque gap during gear shift manoeuvres. A completely passive device, consisting of a planetary gear set mounting a flywheel on the sun gear shaft, allows to continuously connect the engine to the load shaft. Depending on the operating condi- tions, it can either absorb energy from the engine or deliver the previously stored kinetic energy to the wheels when the clutch is disengaged, thus allowing better vehicle performances and/or ride comfort through a suitable coordinated control of engine and clutc

    Variability Profiles of Millisecond X-Ray Pulsars: Results of Pseudo-Newtonian 3D MHD Simulations

    Full text link
    We model the variability profiles of millisecond period X-ray pulsars. We performed three-dimensional magnetohydrodynamic simulations of disk accretion to millisecond period neutron stars with a misaligned magnetic dipole moment, using the pseudo-Newtonian Paczynski-Wiita potential to model general relativistic effects. We found that the shapes of the resulting funnel streams of accreting matter and the hot spots on the surface of the star are quite similar to those for more slowly rotating stars obtained from earlier simulations using the Newtonian potential. The funnel streams and hot spots rotate approximately with the same angular velocity as the star. The spots are bow-shaped (bar-shaped) for small (large) misalignment angles. We found that the matter falling on the star has a higher Mach number when we use the Paczynski-Wiita potential than in the Newtonian case. Having obtained the surface distribution of the emitted flux, we calculated the variability curves of the star, taking into account general relativistic, Doppler and light-travel-time effects. We found that general relativistic effects decrease the pulse fraction (flatten the light curve), while Doppler and light-travel-time effects increase it and distort the light curve. We also found that the light curves from our hot spots are reproduced reasonably well by spots with a gaussian flux distribution centered at the magnetic poles. We also calculated the observed image of the star in a few cases, and saw that for certain orientations, both the antipodal hot spots are simultaneously visible, as noted by earlier authors.Comment: 9 pages, 10 figures, accepted for publication in ApJ; corrected some typo

    Optical Observations of the Binary Millisecond Pulsars J2145-0750 and J0034-0534

    Get PDF
    We report on optical observations of the low-mass binary millisecond pulsar systems J0034-0534 and J2145-0750. A faint (I=23.5) object was found to be coincident with the timing position of PSR J2145-0750. While a galaxy or distant main-sequence star cannot be ruled out, its magnitude is consistent with an ancient white dwarf, as expected from evolutionary models. For PSR J0034-0534 no objects were detected to a limiting magnitude of R=25.0, suggesting that the white dwarf in this system is cold. Using white dwarf cooling models, the limit on the magnitude of the PSR J0034-0534 companion suggests that at birth the pulsar in this system may have rotated with a period as short as 0.6 ms. These observations provide further evidence that the magnetic fields of millisecond pulsars do not decay on time scales shorter than 1 Gyr.Comment: 6 pages, uuencoded, gz -9 compressed postscript, accepted by ApJ
    • 

    corecore