17 research outputs found

    Proteomic Characterization of Human Multipotent Stromal Cells Secreted Proteins with Therapeutic Potential for β-cell Regeneration

    Get PDF
    Novel strategies to stimulate the expansion of β-cell mass in situ are warranted for diabetes therapy. Cell-replacement therapies for the treatment of diabetes have become a focal point in recent years. Endogenous regeneration of β-cell mass has been demonstrated using human multipotent stromal cells (hMSC). However, the secretory factors responsible for initiating endogenous regeneration remain unknown. Successful large-scale proteomic applications to address these questions have been limited in part by difficulties in correctly selecting the appropriate methodologies. Thus, the goal of this thesis was a combination of assessing different proteomic workflows to facilitate investigation into hMSC biology, applying these methods to identify important factors secreted by hMSC for β-cell regeneration, as well as functionally investigating candidate proteins and refining current models of hMSC mediated β-cell regeneration. In working towards these goals, we first assessed the advantages and disadvantages of multiple fractionation techniques to help guide future experimental designs in general proteomic workflows. By applying these methodologies, we probed the secretome of hMSC and identified candidate regulators responsible for regeneration of β-cell mass. In particular, we identified Wnt-signaling as an important contributor for islet regenerative capacity. Additionally, we recognized the clinical applicability of determining protein signatures that could be used to screen hMSC that possessed islet regenerative capacity. Therefore, a robust quantitative proteomics method was developed to screen hMSC that could be used in downstream clinical applications for β-cell regeneration. Taking cues from these proteomic screens, we demonstrate that intrapancreatic-delivery of concentrated hMSC conditioned media (CM) can independently mediate endogenous islet regeneration, without injecting cells. Therapeutic effect was augmented by increasing protein dose and by activation of Wnt-signaling during CM generation. The mechanisms of islet regeneration were multi-factorial, with evidence of glucagon+ cells emerging from the ductal niche within one day of CM injection, followed by ι-β-cell conversion with NKX6.1-expression in transitioning β-cells, and augmented β-cell proliferation to generate functionally mature neoislets that respond to glucose. Altogether, these studies provide an extraordinary view of how this dynamic cell type can be used in clinical settings, to stimulate the expansion of β-cell mass and tip the balance in favor of islet regeneration versus destruction during diabetes

    Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation

    Get PDF
    Aims/hypothesis: Novel strategies to stimulate the expansion of beta cell mass in situ are warranted for diabetes therapy. The aim of this study was to elucidate the secretome of human bone marrow (BM)-derived multipotent stromal cells (MSCs) with documented islet regenerative paracrine function. We hypothesised that regenerative MSCs will secrete a unique combination of protein factors that augment islet regeneration. Methods: Human BM-derived MSCs were examined for glucose-lowering capacity after transplantation into streptozotocin-treated NOD/severe combined immunodeficiency (SCID) mice and segregated into samples with regenerative (MSCR) vs nonregenerative (MSCNR) capacity. Secreted proteins associated with islet regenerative function were identified using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics. To functionally validate the importance of active Wnt signalling, we stimulated the Wnt-signalling pathway in MSCNR samples during ex vivo expansion using glycogen synthase kinase 3 (GSK3) inhibition (CHIR99201), and the conditioned culture media (CM) generated was tested for the capacity to support cultured human islet cell survival and proliferation in vitro. Results: MSCR showed increased secretion of proteins associated with cell growth, matrix remodelling, immunosuppressive and proangiogenic properties. In contrast, MSCNR uniquely secreted proteins known to promote inflammation and negatively regulate angiogenesis. Most notably, MSCR maintained Wnt signalling via Wnt5A/B (~2.5-fold increase) autocrine activity during ex vivo culture, while MSCNR repressed Wnt signalling via Dickkopf-related protein (DKK)1 (~2.5-fold increase) and DKK3 secretion. Inhibition of GSK3 activity in MSCNR samples increased the accumulation of nuclear β-catenin and generated CM that augmented beta cell survival (13% increases) and proliferation when exposed to cultured human islets. Conclusions/interpretation: Maintenance of active Wnt signalling within human MSCs promotes the secretion of matricellular and proangiogenic proteins that formulate a niche for islet regeneration

    Human Multipotent Stromal Cell Secreted Effectors Accelerate Islet Regeneration

    Get PDF
    Human multipotent stromal cells (hMSC) can induce islet regeneration after transplantation via the secretion of proteins that establish an islet regenerative niche. However, the identity of hMSC-secreted signals and the mechanisms by which pancreatic islet regeneration is induced remain unknown. Recently, mammalian pancreatic α-cells have been shown to possess considerable plasticity, and differentiate into β-like cells after near complete β-cell loss or overexpression of key transcriptional regulators. These studies have generated new excitement that islet regeneration during diabetes may be possible if we can identify clinically applicable stimuli to modulate these key regulatory pathways. Herein, we demonstrate that intrapancreatic-injection of concentrated hMSC-conditioned media (CM) stimulated islet regeneration without requiring cell transfer. hMSC CM-injection significantly reduced hyperglycemia, increased circulating serum insulin concentration, and improved glucose tolerance in streptozotocin-treated mice. The rate and extent of endogenous β-cell mass recovery was dependent on total protein dose administered and was further augmented by the activation of Wnt-signaling using GSK3-inhibition during CM generation. Intrapancreatic hMSC CM-injection immediately set in motion a cascade of regenerative events that included the emergence of proliferating insulin + clusters adjacent to ducts, NKX6.1 expression in glucagon + cells at days 1–4 suggesting the acquisition of β-cell phenotype by α-cells, and accelerated β-cell maturation with increased MAFA-expression for \u3e1 month postinjection. Discovery and validation of islet regenerative hMSC-secreted protein may lead to the development of cell-free regenerative therapies able to tip the balance in favor of β-cell regeneration versus destruction during diabetes. Stem Cells 2019;37:516–528

    Protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc tissues

    Get PDF
    The comprehensiveness of data collected by “omics” modalities has demonstrated the ability to drastically transform our understanding of the molecular mechanisms of chronic, complex diseases such as musculoskeletal pathologies, how biomarkers are identified, and how therapeutic targets are developed. Standardization of protocols will enable comparisons between findings reported by multiple research groups and move the application of these technologies forward. Herein, we describe a protocol for parallel proteomic and metabolomic analysis of mouse intervertebral disc (IVD) tissues, building from the combined expertise of our collaborative team. This protocol covers dissection of murine IVD tissues, sample isolation, and data analysis for both proteomics and metabolomics applications. The protocol presented below was optimized to maximize the utility of a mouse model for “omics” applications, accounting for the challenges associated with the small starting quantity of sample due to small tissue size as well as the extracellular matrix-rich nature of the tissue

    High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential

    Get PDF
    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDHhi) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDHl° and ALDHhi MSC subsets demonstrated similar expression of stromal cell (\u3e95% CD73+, CD90+, CD105+) and pericyte (\u3e95% CD146+) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDHhi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDHhi MSC or CDM produced by ALDHhi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDHl° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDHhi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix-modifying functions (tissue inhibitor of metalloprotinase 1 & 2 (TIMP1/2)). Collectively, MSCs selected for ALDHhi demonstrated enhanced proangiogenic secretory functions and represent a purified MSC subset amenable for vascular regenerative applications. Stem Cells 2017;35:1542–1553

    Inhibition of Aldehyde Dehydrogenase-Activity Expands Multipotent Myeloid Progenitor Cells with Vascular Regenerative Function

    Get PDF
    Blood-derived progenitor cell transplantation holds potential for the treatment of severe vascular diseases. Human umbilical cord blood (UCB)-derived hematopoietic progenitor cells purified using high aldehyde dehydrogenase (ALDH hi ) activity demonstrate pro-angiogenic functions following intramuscular (i.m.) transplantation into immunodeficient mice with hind-limb ischemia. Unfortunately, UCB ALDH hi cells are rare and prolonged ex vivo expansion leads to loss of high ALDH-activity and diminished vascular regenerative function. ALDH-activity generates retinoic acid, a potent driver of hematopoietic differentiation, creating a paradoxical challenge to expand UCB ALDH hi cells while limiting differentiation and retaining pro-angiogenic functions. We investigated whether inhibition of ALDH-activity during ex vivo expansion of UCB ALDH hi cells would prevent differentiation and expand progeny that retained pro-angiogenic functions after transplantation into non-obese diabetic/severe combined immunodeficient mice with femoral artery ligation-induced unilateral hind-limb ischemia. Human UCB ALDH hi cells were cultured under serum-free conditions for 9 days, with or without the reversible ALDH-inhibitor, diethylaminobenzaldehyde (DEAB). Although total cell numbers were increased \u3e70-fold, the frequency of cells that retained ALDH hi /CD34+ phenotype was significantly diminished under basal conditions. In contrast, DEAB-inhibition increased total ALDH hi /CD34+ cell number by ≥ 10-fold, reduced differentiation marker (CD38) expression, and enhanced the retention of multipotent colony-forming cells in vitro. Proteomic analysis revealed that DEAB-treated cells upregulated anti-apoptotic protein expression and diminished production of proteins implicated with megakaryocyte differentiation. The i.m. transplantation of DEAB-treated cells into mice with hind-limb ischemia stimulated endothelial cell proliferation and augmented recovery of hind-limb perfusion. DEAB-inhibition of ALDH-activity delayed hematopoietic differentiation and expanded multipotent myeloid cells that accelerated vascular regeneration following i.m. transplantation in vivo. Stem Cells 2018;36:723–736

    An In Vivo CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML

    Full text link
    CRISPR-Cas9-based genetic screens have successfully identified cell type-dependent liabilities in cancer, including acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because most of these screens have been performed in vitro using established cell lines, evaluating the physiologic relevance of these targets is critical. We have established a CRISPR screening approach using orthotopic xenograft models to validate and prioritize AML-enriched dependencies in vivo, including in CRISPR-competent AML patient-derived xenograft (PDX) models tractable for genome editing. Our integrated pipeline has revealed several targets with translational value, including SLC5A3 as a metabolic vulnerability for AML addicted to exogenous myo-inositol and MARCH5 as a critical guardian to prevent apoptosis in AML. MARCH5 repression enhanced the efficacy of BCL2 inhibitors such as venetoclax, further highlighting the clinical potential of targeting MARCH5 in AML. Our study provides a valuable strategy for discovery and prioritization of new candidate AML therapeutic targets. SIGNIFICANCE: There is an unmet need to improve the clinical outcome of AML. We developed an integrated in vivo screening approach to prioritize and validate AML dependencies with high translational potential. We identified SLC5A3 as a metabolic vulnerability and MARCH5 as a critical apoptosis regulator in AML, both of which represent novel therapeutic opportunities.This article is highlighted in the In This Issue feature, p. 275

    Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds

    No full text
    Š 2017 Elsevier Ltd There is great interest in the application of advanced proteomic techniques to characterize decellularized tissues in order to develop a deeper understanding of the effects of the complex extracellular matrix (ECM) composition on the cellular response to these pro-regenerative bioscaffolds. However, the identification of proteins in ECM-derived bioscaffolds is hindered by the high abundance of collagen in the samples, which can interfere with the detection of lower-abundance constituents that may be important regulators of cell function. To address this limitation, we developed a novel multi-enzyme digestion approach using treatment with a highly-purified collagenase derived from Clostridium Histolyticum to selectively deplete collagen from ECM-derived protein extracts, reducing its relative abundance from up to 90% to below 10%. Moreover, we applied this new method to characterize the proteome of human decellularized adipose tissue (DAT), human decellularized cancellous bone (DCB), and commercially-available bovine tendon collagen (BTC). We successfully demonstrated with all three sources that collagenase treatment increased the depth of detection and enabled the identification of a variety of signaling proteins that were masked by collagen in standard digestion protocols with trypsin/LysC, increasing the number of proteins identified in the DAT by ∟2.2 fold, the DCB by ∟1.3 fold, and the BTC by ∟1.6 fold. In addition, quantitative proteomics using label-free quantification demonstrated that the DAT and DCB extracts were compositionally distinct, and identified a number of adipogenic and osteogenic proteins that were consistently more highly expressed in the DAT and DCB respectively. Overall, we have developed a new processing method that may be applied in advanced mass spectrometry studies to improve the high-throughput proteomic characterization of bioscaffolds derived from mammalian tissues. Further, our study provides new insight into the complex ECM composition of two human decellularized tissues of interest as cell-instructive platforms for regenerative medicine

    Loss of ENT1 increases cell proliferation in the annulus fibrosus of the intervertebral disc

    No full text
    © 2019 Wiley Periodicals, Inc. Mice lacking equilibrative nucleoside transporter 1 (ENT1 −/− ) demonstrate progressive calcification of spinal tissues including the annulus fibrosus (AF) of the intervertebral disc (IVD). We previously established ENT1 as the primary nucleoside transporter in the AF and demonstrated dysregulation of biomineralization pathways. To identify cellular pathways altered by loss of ENT1, we conducted microarray analysis of AF tissue from wild-type (WT) and ENT1 −/− mice before calcification (2 months of age) and associated with calcification (6 months of age). Bioinformatic analyses identified cell cycle dysregulation in ENT1 −/− AF tissues and implicated the E2f family of transcription factors as potential effectors. Quantitative polymerase chain reaction analysis confirmed increased expression of multiple E2f transcription factors and E2f interacting proteins (Rb1 and Cdk2) in ENT1 −/− AF cells compared with WT at 6 months of age. At this time point, ENT1 −/− AF tissues showed increased JNK MAPK pathway activation, CDK1, minichromosome maintenance complex component 5 (Mcm5), and proliferating cell nuclear antigen (PCNA) protein expression, and PCNA-positive proliferating cells compared with WT controls. The current study demonstrates that loss of ENT1-mediated adenosine transport leads to increased cell proliferation in the AF of the IVD
    corecore