37 research outputs found

    Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond

    Get PDF
    Kulis-Horn R, Rückert C, Kalinowski J, Persicke M. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond. BMC Microbiology. 2017;17(1): 161.Background The eighth step of l-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in l-histidine biosynthesis. Results Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete l-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two paralog groups from each other and other IMPases. Conclusion The kinetic data obtained for HisN from C. glutamicum, as an example for an IMPase-like HolPases, shows remarkable differences in enzyme properties as compared to HAD- or PHP-type HolPases. The six sequence motifs and the HMMs presented in this study can be used to reliably differentiate between IMPase-like HolPases and IMPase-like proteins with no such activity, with the potential to enhance current and future genome annotations. A phylogenetic analysis reveals that IMPase-like HolPases are not only present in Actinobacteria and plant but can be found in further bacterial phyla, including, among others, Proteobacteria, Chlorobi and Planctomycetes. Keyword

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    Untersuchung der L-Histidinbiosynthese in Corynebacterium glutamicum ATCC 13032 zur Erzeugung eines L-Histidinproduzenten

    No full text
    Kulis-Horn R. Untersuchung der L-Histidinbiosynthese in Corynebacterium glutamicum ATCC 13032 zur Erzeugung eines L-Histidinproduzenten. Bielefeld; 2015

    Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum

    Get PDF
    Kulis-Horn R, Persicke M, Kalinowski J. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microbial Biotechnology. 2014;7(1):5-25.l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E.coli and S.typhimurium, as well as differences. This review summarizes the current knowledge of l-histidine biosynthesis in C.glutamicum. The genes involved and corresponding enzymes are described, in particular focusing on the imidazoleglycerol-phosphate synthase (HisFH) and the histidinol-phosphate phosphatase (HisN). The transcriptional organization of his genes in C.glutamicum is also reported, including the four histidine operons and their promoters. Knowledge of transcriptional regulation during stringent response and by histidine itself is summarized and a translational regulation mechanism is discussed, as well as clues about a histidine transport system. Finally, we discuss the potential of using this knowledge to create or improve C.glutamicum strains for the industrial l-histidine production

    Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition

    No full text
    Kulis-Horn R, Persicke M, Kalinowski J. Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production - Strategies for the elimination of feedback inhibition. Journal of Biotechnology. 2015;206:26-37.L-Histidine biosynthesis in Corynebacterium glutamicum is mainly regulated by L-histidine feedback inhibition of the ATP-phosphoribosyltransferase HisG that catalyzes the first step of the pathway. The elimination of this feedback inhibition is the first and most important step in the development of an L-histidine production strain. For this purpose, a combined approach of random mutagenesis and rational enzyme redesign was performed. Mutants spontaneously resistant to the toxic L-histidine analog beta-(2-thiazolyl)-DL-alanine (2-TA) revealed novel and unpredicted mutations in the C-terminal regulatory domain of HisG resulting in increased feedback resistance. Moreover, deletion of the entire C-terminal regulatory domain in combination with the gain of function mutation S143F in the catalytic domain resulted in a HisG variant that is still highly active even at L-histidine concentrations close to the solubility limit. Notably, the S143F mutation on its own provokes feedback deregulation, revealing for the first time an amino acid residue in the catalytic domain of HisG that is involved in the feedback regulatory mechanism. In addition, we investigated the effect of hisG mutations for L-histidine production on different levels. This comprised the analysis of different expression systems, including plasmid- and chromosome-based overexpression, as well as the importance of codon choice for HisG mutations. The combination of domain deletions, single amino acid exchanges, codon choice, and chromosome-based overexpression resulted in production strains accumulating around 0.5 gl(-1) L-histidine, demonstrating the added value of the different approaches. (C) 2015 Published by Elsevier B.V

    Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Homalodisca vitripennis

    No full text
    The agricultural pest known as the glassy-winged sharpshooter (GWSS) or Homalodisca vitripennis (Hemiptera: Cicadellidae) harbors two bacterial symbionts, “Candidatus Sulcia muelleri” and “Ca. Baumannia cicadellinicola,” which provide the 10 essential amino acids (EAAs) that are limited in the host plant-sap diet. Although they differ in origin and symbiotic age, both bacteria have experienced extensive genome degradation resulting from their ancient restriction to specialized host organs (bacteriomes) that provide cellular support and ensure vertical transmission. GWSS bacteriomes are of different origins and distinctly colored red and yellow. While Sulcia occupies the yellow bacteriome, Baumannia inhabits both. Aside from genomic predictions, little is currently known about the cellular functions of these bacterial symbionts, particularly whether Baumannia in different bacteriomes perform different roles in the symbiosis. To address these questions, we conducted a replicated, strand-specific RNA-seq experiment to assay global gene expression patterns in Sulcia and Baumannia. Despite differences in genomic capabilities, the symbionts exhibit similar profiles of their most highly expressed genes, including those involved in nutrition synthesis and protein stability (chaperonins dnaK and groESL) that likely aid impaired proteins. Baumannia populations in separate bacteriomes differentially express genes enriched in essential nutrient synthesis, including EAAs (histidine and methionine) and B vitamins (biotin and thiamine). Patterns of differential gene expression further reveal complexity in methionine synthesis. Baumannia’s capability to differentially express genes is unusual, as ancient symbionts lose the capability to independently regulate transcription. Combined with previous microscopy, our results suggest that the GWSS may rely on distinct Baumannia populations for essential nutrition and vertical transmission

    Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond

    No full text
    Abstract Background The eighth step of l-histidine biosynthesis is carried out by an enzyme called histidinol-phosphate phosphatase (HolPase). Three unrelated HolPase families are known so far. Two of them are well studied: HAD-type HolPases known from Gammaproteobacteria like Escherichia coli or Salmonella enterica and PHP-type HolPases known from yeast and Firmicutes like Bacillus subtilis. However, the third family of HolPases, the inositol monophosphatase (IMPase)-like HolPases, present in Actinobacteria like Corynebacterium glutamicum (HisN) and plants, are poorly characterized. Moreover, there exist several IMPase-like proteins in bacteria (e.g. CysQ, ImpA, and SuhB) which are very similar to HisN but most likely do not participate in l-histidine biosynthesis. Results Deletion of hisN, the gene encoding the IMPase-like HolPase in C. glutamicum, does not result in complete l-histidine auxotrophy. Out of four hisN homologs present in the genome of C. glutamicum (impA, suhB, cysQ, and cg0911), only cg0911 encodes an enzyme with HolPase activity. The enzymatic properties of HisN and Cg0911 were determined, delivering the first available kinetic data for IMPase-like HolPases. Additionally, we analyzed the amino acid sequences of potential HisN, ImpA, SuhB, CysQ and Cg0911 orthologs from bacteria and identified six conserved sequence motifs for each group of orthologs. Mutational studies confirmed the importance of a highly conserved aspartate residue accompanied by several aromatic amino acid residues present in motif 5 for HolPase activity. Several bacterial proteins containing all identified HolPase motifs, but showing only moderate sequence similarity to HisN from C. glutamicum, were experimentally confirmed as IMPase-like HolPases, demonstrating the value of the identified motifs. Based on the confirmed IMPase-like HolPases two profile Hidden Markov Models (HMMs) were build using an iterative approach. These HMMs allow the fast, reliable detection and differentiation of the two paralog groups from each other and other IMPases. Conclusion The kinetic data obtained for HisN from C. glutamicum, as an example for an IMPase-like HolPases, shows remarkable differences in enzyme properties as compared to HAD- or PHP-type HolPases. The six sequence motifs and the HMMs presented in this study can be used to reliably differentiate between IMPase-like HolPases and IMPase-like proteins with no such activity, with the potential to enhance current and future genome annotations. A phylogenetic analysis reveals that IMPase-like HolPases are not only present in Actinobacteria and plant but can be found in further bacterial phyla, including, among others, Proteobacteria, Chlorobi and Planctomycetes

    Additional file 1: of Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond

    No full text
    Supplementary Figures and Tables. The supplementary figures comprise the SDS-PAGE of purified HisN Cg and Cg0911, several alignments of IMPase-like proteins in C. glutamicum and other species, and the complementation assay for various hisN Cg gene mutants. Furthermore, supplementary tables carry the used strains, plasmids and primers. (DOCX 200 kb
    corecore