2 research outputs found
Structural Characteristics and Thermophysical Properties of Complex Ceramic Oxides in the System Dy2O3–HfO2
The structure and thermophysical properties of materials formed in the system Dy2O3–HfO2 (molar ratio 1 : 3 to 3 : 1) as a result of isothermal firing of x-ray amorphous mixed hydroxides at temperature to 1600°C are investigated. It is shown that for ratios 1 : 3 to 1 : 1 the crystallization process results in the formation of single-phase solid solutions with the structure of defective fluorite and marked nonequivalence of the parameters of the local environment of the Dy and Hf atoms. It is determined that the ceramic based on dysprosium hafnate (Dy2O3: HfO2 = 1 : 1) possesses low, practically temperature independent (to 800°C), thermal conductivity about 1.4 W/(m · K). © 2016, Springer Science+Business Media New York
Structural Characteristics and Thermophysical Properties of Complex Ceramic Oxides in the System Dy2O3–HfO2
The structure and thermophysical properties of materials formed in the system Dy2O3–HfO2 (molar ratio 1 : 3 to 3 : 1) as a result of isothermal firing of x-ray amorphous mixed hydroxides at temperature to 1600°C are investigated. It is shown that for ratios 1 : 3 to 1 : 1 the crystallization process results in the formation of single-phase solid solutions with the structure of defective fluorite and marked nonequivalence of the parameters of the local environment of the Dy and Hf atoms. It is determined that the ceramic based on dysprosium hafnate (Dy2O3: HfO2 = 1 : 1) possesses low, practically temperature independent (to 800°C), thermal conductivity about 1.4 W/(m · K). © 2016, Springer Science+Business Media New York