5 research outputs found

    Comparison of hemodynamic, clinicopathologic, and gastrointestinal motility effects and recovery characteristics of anesthesia with isoflurane and halothane in horses undergoing arthroscopic surgery

    No full text
    Objective - To compare hemodynamic, clinicopathologic, and gastrointestinal motility effects and recovery characteristics of halothane and isoflurane in horses undergoing arthroscopic surgery. Animals - 8 healthy adult horses. Procedure - Anesthesia was maintained with isoflurane or halothane (crossover study). At 6 intervals during anesthesia and surgery, cardiopulmonary variables and related derived values were recorded. Recovery from anesthesia was assessed; gastrointestinal tract motility was subjectively monitored for 72 hours after anesthesia. Horses were administered chromium, and fecal chromium concentration was used to assess intestinal transit time. Venous blood samples were collected for clinicopathologic analyses before and 2, 24, and 48 hours after anesthesia. Results - Compared with halothane-anesthetized horses, cardiac index, oxygen delivery, and heart rate were higher and systemic vascular resistance was lower in isoflurane-anesthetized horses. Mean arterial blood pressure and the dobutamine dose required to maintain blood pressure were similar for both treatments. Duration and quality of recovery from anesthesia did not differ between treatments, although the recovery periods were somewhat shorter with isoflurane. After isoflurane anesthesia, gastrointestinal motility normalized earlier and intestinal transit time of chromium was shorter than that detected after halothane anesthesia. Compared with isoflurane, halothane was associated with increases in serum aspartate transaminase and glutamate dehydrogenase activities, but there were no other important differences in clinicopathologic variables between treatments. Conclusions and clinical relevance - Compared with halothane, isoflurane appears to be associated with better hemodynamic stability during anesthesia, less hepatic and muscle damage, and more rapid return of normal intestinal motility after anesthesia in horses undergoing arthroscopic procedures

    Analysis of the Contribution of Salmonella Pathogenicity Islands 1 and 2 to Enteric Disease Progression Using a Novel Bovine Ileal Loop Model and a Murine Model of Infectious Enterocolitis

    No full text
    We have developed a novel ileal loop model for use in calves to analyze the contribution of Salmonella enterica serovar Typhimurium type III secretion systems to disease processes in vivo. Our model involves constructing ileal loops with end-to-end anastamoses to restore the patency of the small intestine, thereby allowing experimental animals to convalesce following surgery for the desired number of days. This model overcomes the time constraint imposed by ligated ileal loop models that have precluded investigation of Salmonella virulence factors during later stages of the infection process. Here, we have used this model to examine the enteric disease process at 24 h and 5 days following infection with wild-type Salmonella and mutants lacking the virulence-associated Salmonella pathogenicity island 1 (SPI-1) or SPI-2 type III secretion systems. We show that SPI-2 mutants are dramatically attenuated at 5 days following infection and report a new phenotype for SPI-1 mutants, which induce intestinal pathology in calves similar to wild-type Salmonella in the 5-day ileal loop model. Both of these temporal phenotypes for SPI-1 and SPI-2 mutants were corroborated in a second animal model of enteric disease using streptomycin-pretreated mice. These data delineate novel phenotypes for SPI-1 and SPI-2 mutants in the intestinal phase of bovine and murine salmonellosis and provide working models to further investigate the effector contribution to these pathologies

    Not Available

    No full text
    Not AvailableMucosal delivery of CpG oligodeoxynucleotide (ODN) in mice has been shown to induce potent innate immunostimulatory responses and protection against infection. We evaluated the efficacy of CpG ODN in stimulating systemic innate immune responses in sheep following delivery to the pulmonary mucosa. Intrapulmonary (IPM) administration of B-Class CpG ODN in saline induced transient systemic responses which included increased rectal temperatures, elevated serum 2′5′-A synthetase and haptoglobin concentrations. The ODN dose required to induce detectable systemic responses following IPM delivery could be reduced by approximately 80% if the CpG ODN was administered in 30% emulsigen® instead of saline. Intrapulmonary B-Class CpG ODN formulated in 30% emulsigen produced similar effects when compared to those seen following SC injection. These responses were CpG ODN-specific since control GpC ODN did not induce any detectable response. Intrapulmonary administration of both B-Class and the newly described C-Class CpG ODN produced similar effects indicating that both classes of CpG ODN were comparably effective in stimulating innate immune system following mucosal delivery. Administration of CpG ODN directly into the lungs or delivery of CpG ODN via an intratracheal (IT) infusion also produced similar systemic responses. These observations support the conclusion that mucosal delivery of CpG ODN is an effective route for induction of systemic acute phase responses and antiviral effector molecules in large animals, and may be helpful in controlling systemic infections.Not Availabl
    corecore