66 research outputs found

    Age Induced Nitroso-Redox Imbalance Leads to Subclinical Hypogonadism in Male Mice

    Get PDF
    Objective: The cause of age-related changes in testosterone remains unclear. We hypothesized that increased nitroso-redox imbalance with aging could affect testosterone production.Materials and Methods: We measured several markers of nitroso-redox imbalance (4-HNE, 3-NT, and NT) in serum of S-nitrosoglutathione reductase knock out (GSNOR KO) mice that have increased nitroso-redox imbalance and compared these to wild-type (WT) mice. We evaluated the impact of age-induced nitroso-redox imbalance on serum luteinizing hormone (LH) and testosterone (T) in WT young (<2 months), middle-aged (2–6 months), and aged (>12 months) mice. Finally, to elucidate the susceptibility of testes to nitroso-redox imbalance, we measured 4-HNE protein levels in the testes of WT and KO mice.Results: We identified 4-HNE as a reliable marker of nitroso-redox imbalance, as evidenced by increased protein levels in serum of GSNOR KO mice compared with WT mice. We demonstrated that 4-HNE serum protein levels increase in WT mice with age but do not accumulate in the testes. We also found that T levels were similar in all age groups. Interestingly, we found that serum LH levels in aged and middle-aged mice were increased when compared to young mice (n = 5) consistent with the phenotype of subclinical hypogonadism.Conclusions: Increased serum 4-HNE and LH levels without changes in T with age suggest that nitroso-redox imbalance is associated with subclinical hypogonadism in aged mice. Recognizing the relationship and etiology of a currently poorly understood classification of hypogonadism could be a paradigm shift in how age-related testosterone change is diagnosed and treated

    Cardiovascular, Utero- and Fetoplacental Function in Mice during Normal Pregnancy and in the Absence of Endothelial Nitric Oxide Synthase (eNOS)

    No full text
    In pregnancy, the maternal cardiovascular and placental circulation undergoes structural and functional changes to accommodate the growing fetus, but the mechanisms involved are not fully understood. Nitric oxide (NO) increases in normal pregnancy and lack of NO has been implicated in pregnancy related complications, preeclampsia and fetal growth restriction. Thus, the objective of the thesis was to determine if cardiovascular, uteroplacental and fetoplacental changes observed in human pregnancy also occur in mice and to assess the obligatory role of eNOS in mediating these changes. I showed that like humans, mice exhibit increases in maternal cardiac output, stroke volume, plasma volume, and uterine arterial blood flow, and a transient decrease in arterial pressure during pregnancy. Importantly, I showed that endothelial nitric oxide synthase (eNOS) plays an important role in promoting the progressive increase in maternal cardiac chamber dimensions and output and the enlargement of the aorta during pregnancy in mice. Another novel finding was that eNOS plays an important role in remodeling of the uterine and umbilical vasculatures during pregnancy. The remodeling of the uterine vasculatures, including the uterine and spiral arteries, were blunted in the eNOS KO mice with ko fetuses (KO(ko)) and this likely contributed to elevated vascular resistance and reduced perfusion of the uterine circulation during pregnancy. Impaired spiral artery remodeling may be caused by a deficiency in decidual uterine natural killer cells. Fetal placental vascularization was also impaired in eNOS KO(ko) mice, which likely increased vascular resistance and thereby reduced fetoplacental perfusion. Reduced vascularization may be due to decreased VEGF mRNA and protein expression in KO(ko) placentas. Decreased perfusion in both the uterine and umbilical circulations most likely contributed to elevated placental and fetal hypoxia in the eNOS KO(ko) mice. Interestingly, despite placental hypoxia, eNOS KO(ko) mice do not show the classical signs of preeclampsia including hypertension and proteinuria nor are maternal plasma sFlt1 levels elevated. Nevertheless, eNOS KO(ko) pups are growth restricted at term, and this is mainly due to the fetal genotype. These findings suggest that eNOS plays an essential role during pregnancy in remodeling of the maternal heart, aorta, and uterine and umbilical vasculatures thereby augmenting blood flow to the maternal and fetal sides of the placenta and thereby promoting fetal growth in mice.Ph
    corecore